$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Stirling Asymptotic Expansion '$+$' Duplication Formula:
\begin{align}
\ln\pars{\Gamma\pars{z + {1 \over 2}}} & \sim
z\ln\pars{z} - z + {1 \over 2}\,\ln\pars{2\pi} - {1 \over 24z}
+
{7 \over 2880z^{3}} - {31 \over 40320z^{5}} + \mrm{O}\pars{1 \over z^{7}}
\\[5mm]
\ln\pars{\Gamma\pars{z}}
& \sim
\pars{z - \color{#f00}{1 \over 2}}\ln z - z + {1 \over 2}\ln\pars{2\pi} + \frac{1}{12z}
-
\frac{1}{360z^{3}} + {1 \over 1260z^{5}} + \mrm{O}\pars{1 \over z^{7}}
\end{align}
$$
\ln\pars{\Gamma\pars{z + 1/2} \over \root{z}\Gamma\pars{z}} \sim
-\,{1 \over 8z} + {1 \over 192z^{3}} + \mrm{O}\pars{1 \over z^{5}}\quad
\mbox{as}\ \verts{z} \to \infty
$$