Here is a method without Stirling's formula. Just use an inequality:
$$0<x-\log(1+x)<\frac{x^2}{2},\quad \forall x>0.$$
Let
$$x_n=\frac{(2n+1)(2n+3)\cdots (4n+1)}{(2n)(2n+2)\cdots(4n)},$$
then
$$\log x_n=\sum_{k=0}^{n}\log\left(1+\frac{1}{2n+2k}\right).$$
Since
$$0<\frac{1}{2n+2k}-\log\left(1+\frac{1}{2n+2k}\right)<\frac1{8(n+k)^2},k=0,1,\cdots,n,$$
we have
$$0<\sum_{k=0}^{n}\frac{1}{2n+2k}-\sum_{k=0}^{n}\log\left(1+\frac{1}{2n+2k}\right)<\sum_{k=0}^{n}\frac1{8(n+k)^2}
=\frac{1}{8n}\cdot\frac{1}{n}\sum_{k=0}^{n}\frac{1}{\left(1+\frac{k}{n}\right)^2}\to0.$$
So
$$\lim_{n\to\infty}\log x_n=\lim_{n\to\infty}\sum_{k=0}^{n}\frac{1}{2n+2k}
=\frac12\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n}\frac{1}{1+\frac{k}{n}}
=\frac12\log2.$$
Hence
$$\lim_{n\to\infty}\frac{(2n+1)(2n+3)\cdots (4n+1)}{(2n)(2n+2)\cdots(4n)}
=\lim_{n\to\infty}e^{\log x_n}=\sqrt2.$$
$\begin{gathered} \mathop {\lim }\limits_{n \to \infty } \frac{{\prod\limits_{k = 0}^{an} {\left( {2n + 2k + 1} \right)} }}{{\prod\limits_{k = 0}^{an} {\left( {2n + 2k} \right)} }} = \sqrt{a+1}, \end{gathered}$ where $a \in \mathbb{N}$.
– NNN Mar 28 '24 at 12:10