Question: How would you find the roots of the cubic$$x^3+x^2-10x-8=0\tag{1}$$
I'm not too sure where to begin. I'm thinking of somehow, implementing $\cos 3\theta=4\cos^3\theta-3\cos\theta$.
I've tried substituting $x$ with $t+t^{-1}$, but didn't get anywhere, and using Vieta's trigonometric solution formula, I got $$x_1=\frac {2\sqrt{31}}3\cdot\cos\left(\frac {\arccos \frac {2}{\sqrt{31}}}3\right)-\frac 13\\x_2=\frac {2\sqrt{31}}3\cdot\cos\left(\frac {2\pi+\arccos\frac {2}{\sqrt{31}}}3\right)-\frac 13\\x_3=\frac {2\sqrt{31}}{3}\cdot\cos\left(\frac {4\pi+\arccos\frac 2{\sqrt{31}}}3\right)-\frac 13$$ But that's not the form I want. I'm looking for a form of $2\left(\cos\frac {\text{something}}{31}+\cos\frac {\text{something}}{31}+\cos\frac {\text{something}}{31}\right)$.
I've spent so much time, that I'm practically burnt out. -.-