Let $a_n>0$ and $b_n\geq 0$, then $\lim\sup(a_nb_n)\leq \lim\sup(a_n)\limsup(b_n)$
My attempt at a proof is as follows. Let $A_n=\sup\{a_n, a_{n+1},...\}$, $B_n=\sup\{b_n, b_{n+1},...\}$, and $C_n=\sup\{a_nb_n, a_{n+1}b_{n+1},...\}$.
Note: $a_mb_m \leq A_nB_n$ for all $m \geq n$.
Thus $\limsup(a_nb_n)=\lim C_n \leq \lim (A_nB_n) = (\lim A_n)(\lim B_n) = (\limsup a_n)(\limsup b_n).$
$1=\lim_{n\rightarrow\infty} \frac{n}{n}\neq (\lim n)(\lim \frac{1}{n})=undetermined$
– Alex R. Sep 17 '12 at 04:16