Quick approach, using the equivalent definition:
We have
$$
\limsup_{n \to \infty} a_n b_n =
\lim_{n \to \infty} \sup_{m \geq n} a_m b_m
=
\lim_{n \to \infty} \sup_{m=m',m \geq n} a_m b_{m'} \leq\\
\lim_{n \to \infty} \sup_{m,m' \geq n} a_m b_{m'} =
\lim_{n \to \infty} \left(\sup_{m \geq n} a_m b_{m'}\right)
\left(\sup_{m' \geq n} a_m b_{m'}\right) =\\
\left(\lim_{n \to \infty}\sup_{m \geq n} a_m b_{m'}\right)
\left(\lim_{n \to \infty}\sup_{m' \geq n} a_m b_{m'}\right)=\\
\limsup a_n \cdot \limsup b_n
$$
Using the sublimit definition:
Let $a = \limsup \{a_n\}$ and $b = \limsup \{b_n\}$.
Consider an arbitrary convergent subsequence $a_{n_k}b_{n_k}$ of $\{a_nb_n\}$. If we can show that
$$
\lim_{k \to \infty} a_{n_k} b_{n_k} \leq a \cdot b
$$
then we'd be able to say that $a \cdot b$ is an upper-bound to the set of all sublimits of $a_n b_n$. So, by the definition of a supremum, we could deduce that
$$
\limsup(a_n b_n) \le \limsup(a_n) \limsup(b_n)
$$
Which is what we want.
To prove that this is the case, we could proceed as follows: let $\epsilon > 0$ be arbitrary. Let $L = \lim_{n \to \infty} a_{n_k}b_{n_k}$, noting that $L \leq \limsup(a_n b_n)$. There exists a $K$ such that for $k > K$, we have:
- $a_k b_k \geq L - \epsilon$
- $a_k \leq a + \epsilon$
- $b_k \leq b + \epsilon$
In particular, we have (for any such $k$)
$$
L - \epsilon \leq a_k b_k \leq (a+\epsilon)(b+\epsilon)
$$
Noting that $\epsilon > 0$ was arbitrary, we conclude that $L \leq ab$, as desired.