let $n\in N^{+}$ and such $n\ge 2$
prove or disprove $$\sqrt{2\sqrt{3\sqrt{4{\cdots\sqrt{n}}}}}<\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+\cdots+(n-1)\sqrt{1+n\sqrt{1}}}}}}\tag{1}$$
and I have use induction prove $$\sqrt{2\sqrt{3\sqrt{4{\cdots\sqrt{n}}}}}<3$$ because $$\sqrt{(k+1)(k-1)}<k$$ and we known this Ramanujan's indentity: Prove $\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{\cdots}}}}=3$ and also use indution prove this $$\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+\cdots+(n-1)\sqrt{1+n\sqrt{1}}}}}}<3$$ see:Evaluating the nested radical $ \sqrt{1 + 2 \sqrt{1 + 3 \sqrt{1 + \cdots}}} $.
But how to prove $(1)$