Fundamental Theorem of Linear Algebra
The matrix $\mathbf{A} \in \mathbb{C}^{m\times n}$ induces the four fundamental subspaces. In finite dimension, the domain $\mathbf{C}^{n}$, and codomain, $\mathbf{C}^{m}$ are
$$
\begin{align}
%
\mathbf{C}^{n} =
\color{blue}{\mathcal{R} \left( \mathbf{A} \right)} \oplus
\color{red}{\mathcal{N} \left( \mathbf{A}^{*} \right)} \\
%
\mathbf{C}^{m} =
\color{blue}{\mathcal{R} \left( \mathbf{A}^{*} \right)} \oplus
\color{red} {\mathcal{N} \left( \mathbf{A} \right)}
%
\end{align}
$$
Least squares
Consider a data vector $b \in \mathbb{C}^{m}$ that does not lie in the null space, that is, $b \notin \color{red} {\mathcal{N} \left( \mathbf{A} \right)}$. We are solving for the least squares minimizers defined as
$$
x_{LS} = \left\{ x\in\mathbb{C}^{n} \colon \lVert \mathbf{A} x_{LS} - b \rVert_{2}^{2} \text{ is minimized} \right\}.
$$
These solutions are
$$
x_{LS} =
\color{blue}{\mathbf{A}^{\dagger} b} +
\color{red}{\left( \mathbf{I}_{n} - \mathbf{A}^{\dagger}\mathbf{A} \right) y}, \quad y\in\mathbb{C}^{n}
$$
The Moore-Penrose pseudoinverse matrix is
$$
\begin{align}
\mathbf{A}^{\dagger} &=
\mathbf{V} \, \Sigma^{\dagger} \mathbf{U}^{*} \\
%
&=
% V
\left[ \begin{array}{cc}
\color{blue}{\mathbf{V}_{\mathcal{R}}} &
\color{red}{\mathbf{V}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S}_{\rho\times \rho}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
% U
\left[ \begin{array}{cc}
\color{blue}{\mathbf{U}_{\mathcal{R}}}^{*} & \color{red}{\mathbf{U}_{\mathcal{N}}}^{*}
\end{array} \right]
%
\end{align}
$$
SVD General case
The singular value decomposition provides an orthonormal basis for the four subspaces. The range spaces are aligned and the difference in length scales is expressed in the singular values.
The decomposition for a matrix with rank $\rho$ is
$$
\begin{align}
\mathbf{A} &=
\mathbf{U} \, \Sigma \, \mathbf{V}^{*} \\
%
&=
% U
\left[ \begin{array}{cc}
\color{blue}{\mathbf{U}_{\mathcal{R}}} & \color{red}{\mathbf{U}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cccccc}
\sigma_{1} & 0 & \dots & & & \dots & 0 \\
0 & \sigma_{2} \\
\vdots && \ddots \\
& & & \sigma_{\rho} \\
& & & & 0 & \\
\vdots &&&&&\ddots \\
0 & & & & & & 0 \\
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \\
\color{red}{\mathbf{V}_{\mathcal{N}}}^{*}
\end{array} \right] \\
%
& =
% U
\left[ \begin{array}{cccccccc}
\color{blue}{u_{1}} & \dots & \color{blue}{u_{\rho}} & \color{red}{u_{\rho+1}} & \dots & \color{red}{u_{n}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S}_{\rho\times \rho} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{v_{1}^{*}} \\
\vdots \\
\color{blue}{v_{\rho}^{*}} \\
\color{red}{v_{\rho+1}^{*}} \\
\vdots \\
\color{red}{v_{n}^{*}}
\end{array} \right]
%
\end{align}
$$
Let's look at your special cases.
Tall: $m>n$
The overdetermined case of full column rank $\rho = n$.
$$
\begin{align}
\mathbf{A} &=
\mathbf{U} \, \Sigma \, \mathbf{V}^{*} \\
%
&=
% U
\left[ \begin{array}{cc}
\color{blue}{\mathbf{U}_{\mathcal{R}}} &
\color{red}{\mathbf{U}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{c}
\mathbf{S}_{\rho\times \rho} \\
\mathbf{0}
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*}
\end{array} \right] \\
%
\end{align}
$$
$$
\begin{align}
\mathbf{A}^{\dagger} &=
\mathbf{V} \, \Sigma^{\dagger} \mathbf{U}^{*} \\
%
&=
% V
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S}_{\rho\times \rho}^{-1} & \mathbf{0}
\end{array} \right]
% U
\left[ \begin{array}{c}
\color{blue}{\mathbf{U}_{\mathcal{R}}}^{*} \\
\color{red} {\mathbf{U}_{\mathcal{N}}}^{*}
\end{array} \right]
%
\end{align}
$$
Wide: $m<n$
The underdetermined case of full row rank $\rho = m$.
$$
\begin{align}
\mathbf{A} &=
\mathbf{U} \, \Sigma \, \mathbf{V}^{*} \\
%
&=
% U
\left[ \begin{array}{c}
\color{blue}{\mathbf{U}_{\mathcal{R}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S}_{\rho\times \rho} & \mathbf{0}
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \\
\color{red} {\mathbf{V}_{\mathcal{N}}}^{*}
\end{array} \right] \\
%
\end{align}
$$
$$
\begin{align}
\mathbf{A}^{\dagger} &=
\mathbf{V} \, \Sigma^{\dagger} \mathbf{U}^{*} \\
%
&=
% V
\left[ \begin{array}{cc}
\color{blue}{\mathbf{V}_{\mathcal{R}}} &
\color{red} {\mathbf{V}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S}_{\rho\times \rho}^{-1} & \mathbf{0}
\end{array} \right]
% U
\left[ \begin{array}{c}
\color{blue}{\mathbf{U}_{\mathcal{R}}}^{*}
\end{array} \right]
%
\end{align}
$$
Square: $m=n$
The nonsingular case $\rho = m = n$.
$$
\begin{align}
\mathbf{A} &=
\mathbf{U} \, \Sigma \, \mathbf{V}^{*} \\
%
&=
% U
\left[ \begin{array}{c}
\color{blue}{\mathbf{U}_{\mathcal{R}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{c}
\mathbf{S}
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \\
\end{array} \right]
%
\end{align}
$$
$$
\begin{align}
\mathbf{A}^{\dagger} &=
\mathbf{V} \, \Sigma^{\dagger} \mathbf{U}^{*} \\
%
&=
% V
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{c}
\mathbf{S}^{-1}
\end{array} \right]
% U
\left[ \begin{array}{c}
\color{blue}{\mathbf{U}_{\mathcal{R}}}^{*}
\end{array} \right]
%
\end{align}
$$
Original example
@Vini presents the solution clearly. To emphasize his conclusions, here are the background computations. The product matrix is
$$
\mathbf{A}^{\mathrm{T}}\mathbf{A} =
\left[
\begin{array}{ccc}
1 & 1 & 0 \\
1 & 14 & 0 \\
0 & 0 & 0 \\
\end{array}
\right],
$$
which quickly leads to the characteristic polynomial
$$
p(\lambda) = \left( -\lambda^{2} + 15 \lambda-13\right) \lambda.
$$
The eigenvalue spectrum is then
$$
\lambda \left( \mathbf{A}^{\mathrm{T}}\mathbf{A} \right) =
\left\{
\frac{1}{2}
\left( 15 \pm \sqrt{173}
\right), 0
\right\}.
$$
The singular values are the square root of the nonzero eigenvalues
$$
\left\{
\sigma_{1}, \sigma_{2}
\right\}
=
\left\{
\sqrt{\frac{1}{2}
\left( 15 + \sqrt{173}
\right)},
\sqrt{\frac{1}{2}
\left( 15 -\sqrt{173}
\right)}
\right\}
$$
There are two nonzero singular values, therefore the matrix rank is $\rho = 2$.
Let
$$
\mathbf{S} =
\left(
\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
\end{array}
\right).
$$
This diagonal matrix is embedded in the sabot matrix, padded with zeros to insure conformability between the matrices $\mathbf{U}$ and $\mathbf{V}$:
$$
\Sigma =
\left[
\begin{array}{ccc}
\sqrt{\frac{1}{2} \left(\sqrt{173}+15\right)} & 0 & 0 \\
0 & \sqrt{\frac{1}{2} \left(15-\sqrt{173}\right)} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}
\right]
=
\left(
\begin{array}{cc}
\mathbf{S} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} \\
\end{array}
\right).
$$
The pseudoinverse of the $\Sigma$ matrix is
$$
\Sigma^{\dagger} =
\left[
\begin{array}{ccc}
\sqrt{\frac{1}{2} \left(\sqrt{173}+15\right)}^{-1} & 0 & 0 \\
0 & \sqrt{\frac{1}{2} \left(15-\sqrt{173}\right)}^{-1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}
\right]
=
\left(
\begin{array}{cc}
\mathbf{S}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} \\
\end{array}
\right).
$$
In this case where $m=n$, the matrix products are identical:
$$
\Sigma^{\dagger}\Sigma = \Sigma\, \Sigma^{\dagger} =
\left[
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}
\right]
=
\left[
\begin{array}{cc}
\mathbf{I}_{2} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} \\
\end{array}
\right].
$$
Another example of $\Sigma$ gymnastics is in here: Singular Value Decomposition: Prove that singular values of A are square roots of eigenvalues of both $AA^{T}$ and $A^{T}A$
The eigenvectors of the product matrix are
$$
%
v_{1} =
\left[ \begin{array}{c}
\frac{1}{2} \left(-13+\sqrt{173}-13\right) \\ 1 \\ 0
\end{array} \right], \quad
%
v_{2} =
\left[ \begin{array}{c}
\frac{1}{2} \left(-13-\sqrt{173}\right) \\ 1 \\ 0
\end{array} \right], \quad
%
$$
The normalized form constitute the column vectors of the domain matrix
$$
\mathbf{V} =
%
\left[ \begin{array}{cc}
%
\left( 1 + \left(\frac{-13 + \sqrt{173}}{4}\right)^2 \right)^{-\frac{1}{2}}
%
\left[ \begin{array}{c}
\frac{1}{2} \left(-13+\sqrt{173}\right) \\ 1 \\ 0
\end{array} \right]
&
%
\left( 1 + \left(\frac{13 + \sqrt{173}}{4}\right)^2 \right)^{-\frac{1}{2}}
%
\left[ \begin{array}{c}
\frac{1}{2} \left(-13-\sqrt{173}\right) \\ 1 \\ 0
\end{array} \right]
%
\end{array} \right]
$$