Consider the contour integral
\begin{align}
\int_C f(z)\ dz=\int_{C}\frac{1-e^{iz}}{z^2}\ dz
\end{align}
where $C=L_1+C_R +L_2 +C_\epsilon$ is given by

It's not hard to see that $f(z)$ has a pole of order 2 at $z=0$ and analytic everywhere else. Hence by Cauchy's theorem, we have that
\begin{align}
\int_{L_1} \frac{1-e^{iz}}{z^2}\ dz + \int_{C_R}\frac{1-e^{iz}}{z^2}\ dz+ \int_{L_2}\frac{1-e^{iz}}{z^2}\ dz+\int_{C_\epsilon}\frac{1-e^{iz}}{z^2}\ dz = 0.
\end{align}
Let us simplify each integral. Observe
\begin{align}
\int_{L_1} \frac{1-e^{iz}}{z^2}\ dz = \int^R_{\epsilon} \frac{1- e^{ix}}{x^2}\ dx = \int^R_{\epsilon}\frac{1-\cos x}{x^2}\ dx - i\int^R_\epsilon \frac{\sin x}{x^2}\ dx
\end{align}
and
\begin{align}
\int_{L_2} \frac{1-e^{iz}}{z^2}\ dz =&\ \int^{-\epsilon}_{-R} \frac{1-e^{ix}}{x^2}\ dx = \int^{-\epsilon}_{-R}\frac{1-\cos x}{x^2}\ dx - i\int^{-\epsilon}_{-R} \frac{\sin x}{x^2}\ dx \\
=&\ \int^R_\epsilon \frac{1-\cos x}{x^2}\ dx + i\int^{R}_{\epsilon} \frac{\sin x}{x^2}\ dx
\end{align}
which means
\begin{align}
\int_{L_1} \frac{1-e^{iz}}{z^2}\ dz+\int_{L_2} \frac{1-e^{iz}}{z^2}\ dz= 2\int^R_{\epsilon} \frac{1-\cos x}{x^2}\ dx.
\end{align}
Next, by Jordan's lemma we see that
\begin{align}
\left|\int_{C_R}\frac{1-e^{iz}}{z^2}\ dz\right|\rightarrow 0
\end{align}
as $R \rightarrow \infty$. Lastly, by the fractional residue theorem, we have that
\begin{align}
\lim_{\epsilon\rightarrow 0}\int_{C_\epsilon} \frac{1-e^{iz}}{z^2}\ dz= -\pi i \operatorname{Res}_{z=0} f(z) = -\pi .
\end{align}
Thus, it follows
\begin{align}
\int^\infty_0 \frac{1-\cos x}{x^2}\ dx = \frac{\pi}{2}.
\end{align}