If I understand the question correctly, we have the constrained least-squares problem
$$\begin{array}{ll} \text{minimize} & \|\mathrm A \mathrm X - \mathrm B\|_F^2\\ \text{subject to} & \rho(\mathrm X) \leq 1\end{array}$$
where $\mathrm A, \mathrm B \in \mathbb{R}^{m \times n}$ are given and $\rho (\cdot)$ denotes the spectral radius. Using a strict inequality instead
$$\begin{array}{ll} \text{minimize} & \|\mathrm A \mathrm X - \mathrm B\|_F^2\\ \text{subject to} & \rho(\mathrm X) < 1\end{array}$$
If $\rho(\mathrm X) < 1$, then the origin of the discrete-time linear dynamical system $\eta_{k+1} = \mathrm X \eta_{k}$ is globally asymptotically stable (GAS). Let $V (\eta) := \eta^T \mathrm P \eta$ be a Lyapunov function, where $\mathrm P \succ \mathrm O_n$ is to be determined. Hence,
$$(\forall \eta \neq 0_n) (V (\mathrm X \eta) - V (\eta) < 0) \Longleftrightarrow (\forall \eta \neq 0_n) (\eta^T (\mathrm X^T \mathrm P \mathrm X - \mathrm P) \, \eta < 0) \Longleftrightarrow \mathrm X^T \mathrm P \mathrm X - \mathrm P \prec \mathrm O_n$$
where the matrix inequality $\mathrm X^T \mathrm P \mathrm X - \mathrm P \prec \mathrm O_n$ can be rewritten as $\mathrm P - \mathrm X^T \mathrm P \mathrm X \succ \mathrm O_n$. Thus, we have the following optimization problem in $\mathrm X$ and $\mathrm P$
$$\begin{array}{ll} \text{minimize} & \|\mathrm A \mathrm X - \mathrm B\|_F^2\\ \text{subject to} & \mathrm P \succ \mathrm O_n\\ & \mathrm P - \mathrm X^T \mathrm P \mathrm X \succ \mathrm O_n\end{array}$$
Note that $\mathrm P - \mathrm X^T \mathrm P \mathrm X \succ \mathrm O_n$ is not a linear matrix inequality (LMI). How can one solve this?
I am interested in the maximum of the eigenvalues magnitude being <= 1, so that they are constrained within a unit disc.
– ajl123 Oct 12 '16 at 21:20