Given $\mathrm A \in \mathbb R^{m \times n}$,
$$\begin{array}{ll} \text{maximize} & \langle \mathrm A , \mathrm X \rangle\\ \text{subject to} & \| \mathrm X \|_2 \leq 1\end{array}$$
Since $\| \mathrm X \|_2 \leq 1$ is equivalent to $\sigma_{\max} (\mathrm X ) \leq 1$, which is equivalent to $\lambda_{\max} (\mathrm X^\top \mathrm X) \leq 1$, we have
$$1 - \lambda_{\max} (\mathrm X^\top \mathrm X) = \lambda_{\min} (\mathrm I_n - \mathrm X^\top \mathrm X)\geq 0$$
and, thus,
$$\mathrm I_n - \mathrm X^\top \mathrm X \succeq \mathrm O_n$$
Using the Schur complement test for positive semidefiniteness, we obtain the following linear matrix inequality (LMI)
$$\begin{bmatrix} \mathrm I_m & \mathrm X\\ \mathrm X^\top & \mathrm I_n\end{bmatrix} \succeq \mathrm O_{m+n}$$
Hence, we have the following semidefinite program (SDP)
$$\begin{array}{ll} \text{maximize} & \langle \mathrm A , \mathrm X \rangle\\ \text{subject to} & \begin{bmatrix} \mathrm I_m & \mathrm X\\ \mathrm X^\top & \mathrm I_n\end{bmatrix} \succeq \mathrm O_{m+n}\end{array}$$
Is this correct? Any feedback would be highly appreciated. Thank you.