How can I compute the following limit, and is there a general method to resolve problems of this type?
$$\lim_{x\to\infty}x\left[\left(1+\frac{1}{x}\right)^x-e\right]$$
How can I compute the following limit, and is there a general method to resolve problems of this type?
$$\lim_{x\to\infty}x\left[\left(1+\frac{1}{x}\right)^x-e\right]$$
Using the Taylor Series for $\log(1+x)$, we get $$ \begin{align} x\log\left(1+\frac1x\right) &=x\left(\frac1x-\frac1{2x^2}+O\left(\frac1{x^3}\right)\right)\\ &=1-\frac1{2x}+O\left(\frac1{x^2}\right) \end{align} $$ Therefore, using the Taylor Series for $e^x$, we get $$ \begin{align} x\left[\left(1+\frac1x\right)^x-e\right] &=x\left[e^{1-\frac1{2x}+O\left(\frac1{x^2}\right)}-e\right]\\ &=xe\left[e^{-\frac1{2x}+O\left(\frac1{x^2}\right)}-1\right]\\ &=xe\left[-\frac1{2x}+O\left(\frac1{x^2}\right)\right]\\ &=-\frac e2+O\left(\frac1x\right) \end{align} $$ Thus, $$ \lim_{x\to\infty}x\left[\left(1+\frac1x\right)^x-e\right]=-\frac e2 $$
hint:$$\lim_{x\to\infty}{x\left(\left(1+\frac{1}{x}\right)^x-e\right)}=\lim_{x\to\infty}\frac{{\left(1+\frac{1}{x}\right)^x-e}}{\frac{1}{x}}=$$ then apply L'Hospital rule