3

How can I compute the following limit, and is there a general method to resolve problems of this type?

$$\lim_{x\to\infty}x\left[\left(1+\frac{1}{x}\right)^x-e\right]$$

achille hui
  • 122,701
math_lover
  • 5,826

2 Answers2

7

Using the Taylor Series for $\log(1+x)$, we get $$ \begin{align} x\log\left(1+\frac1x\right) &=x\left(\frac1x-\frac1{2x^2}+O\left(\frac1{x^3}\right)\right)\\ &=1-\frac1{2x}+O\left(\frac1{x^2}\right) \end{align} $$ Therefore, using the Taylor Series for $e^x$, we get $$ \begin{align} x\left[\left(1+\frac1x\right)^x-e\right] &=x\left[e^{1-\frac1{2x}+O\left(\frac1{x^2}\right)}-e\right]\\ &=xe\left[e^{-\frac1{2x}+O\left(\frac1{x^2}\right)}-1\right]\\ &=xe\left[-\frac1{2x}+O\left(\frac1{x^2}\right)\right]\\ &=-\frac e2+O\left(\frac1x\right) \end{align} $$ Thus, $$ \lim_{x\to\infty}x\left[\left(1+\frac1x\right)^x-e\right]=-\frac e2 $$

robjohn
  • 345,667
2

hint:$$\lim_{x\to\infty}{x\left(\left(1+\frac{1}{x}\right)^x-e\right)}=\lim_{x\to\infty}\frac{{\left(1+\frac{1}{x}\right)^x-e}}{\frac{1}{x}}=$$ then apply L'Hospital rule

Umberto P.
  • 52,165
Adi Dani
  • 16,949
  • L'Hospital seems to give something pretty complicated. Perhaps a second application with some simplification might help. – robjohn Oct 10 '16 at 16:11