You can actually do it without l'Hopital's rule, too. Define $f(x)=(1+x)^{1/x}$. As the other answers, and Michael Rozenberg have pointed out, $\lim_{n\to+\infty}n\left((1+\frac1n)^n-e\right)=\lim_{x\to0^+}\frac{(1+x)^{1/x}-e}{x}$. As $\lim_{x\to0^+}(1+x)^{1/x}=e$, as shown here, your limit equals $f'(x)$ as $x\to0$.
By setting $\ln f(x)=\frac{1}{x}\ln(1+x)$ and differentiating both sides with respect to $x$, we can find that $f'(x)=f(x)\left(\frac{x-(1+x)\ln (1+x)}{x^2(1+x)}\right)$. This gives the following:
$$f'(x)=\underbrace{\left(1+x\right)^{\frac{1-x}{x}}}_t\left(\underbrace{\frac{x-\ln \left(1+x\right)}{x^2}}_u-\underbrace{\frac{\ln \left(1+x\right)}{x}}_v\right)$$
As $x\to0$, the limit of $t$ is $\lim \left((1+x)^{1/x}\right)^{1-x}=\left(e\right)^{1-0}$. The limit of $u$ is $\lim\frac{x-\left(x-x^2/2+\mathcal{O}(x^3)\right)}{x^2}=\frac12+\frac{\mathcal{O}(x^3)}{x^2}$, by the Taylor series for $\ln(1+x)$, as shown here. By the same reasoning, the limit of $v$ is $\lim\frac{x-\mathcal{O}(x^2)}{x}=1$. Hence, $\lim_{x\to0}f'(x)=e(\frac{1}{2}-1)$.