I have a problem to solve, and it makes me realise that I have a bad understanding of basis change and the linear applications that go along. I have a linear application who's matrix is expressed like this:
$A=\begin{bmatrix} \frac{4a-b}{3}&\frac{2a-2b}{3} \\ \frac{-2a+2b}{3}& \frac{-a+4b}{3} \end{bmatrix} $
I suppose in order to get the basis of this linear appplication I should compute the values of $Av_{1}$ and $Av_{2}$ where $v_{1}=\binom{1}{0}$ and $v_{2}=\binom{0}{1}$. Am I correct so far?
Now, where my lack of understand lacks is here: how to I determine the matrix $A^{'}$ that is the associated matrix in the base $x_{1} \:x_{2}$? Should I just compute $Ax_{1}$ and $Ax_{2}$?
EDIT 1: I made a small mistake in the matrix: it's not$$A=\begin{bmatrix} \frac{4a-b}{3}&\frac{2a-2b}{3} \\ \frac{-2a+2b}{3}& \frac{-a+4b}{3} \end{bmatrix} $$ but $$A=\begin{bmatrix} \frac{4a-b}{3}&\frac{-2a+2b}{3} \\ \frac{2a-2b}{3}& \frac{-a+4b}{3} \end{bmatrix} $$
I calculated the determinant of this matrix, and found that it is equal to: $3ab$. I know that to find the inverse of the matrix A, I can use the adjudant matrix. So normally I should be able to compute this: $$A^{-1}=\frac{1}{3ab}*adj(A)$$
For $adj(A)$ I did this:
- Find the cofactor matrix:
$Com(A)$: $$Com(A)=\begin{bmatrix} \frac{-a+4b}{3}&\frac{2a-2b}{3} \\ \frac{2b-2a}{3}& \frac{4a-b}{3} \end{bmatrix} $$
The adjugate matrix will be equal to the transpose of the $Com(A)$. So we have: $$adj(A)=\begin{bmatrix} \frac{-a+4b}{3}&\frac{2b-2a}{3} \\ \frac{2a-2b}{3}& \frac{4a-b}{3} \end{bmatrix} $$
- Find the expression of the inverse:
I have now: $$A^{-1}=\frac{1}{3ab}*\begin{bmatrix} \frac{-a+4b}{3}&\frac{2b-2a}{3} \\ \frac{2a-2b}{3}& \frac{4a-b}{3} \end{bmatrix}$$
Or in a simplified way:
$$A^{-1}=\frac{1}{9ab}*\begin{bmatrix} -a+4b&2b-2a\\ 2a-2b& 4a-b \end{bmatrix}$$
So now all I have to do is to chose the two vectors I want $v_{1},v_{2}$ and calculate $A^{-1}v_{1}$ and $A^{-1}v_{2}$? And this will give me the basis of the linear transformation in the basis ($v_{1},v_{2}$), right?
EDIT 2:
I made a mistake. I should not calculate $A^{-1}v_{1}$ and $A^{-1}v_{2}$ but solve $v_{1}=A^{-1}\begin{bmatrix} \frac{4a-b}{3}\\ \frac{2a-2b}{3} \end{bmatrix}$ and $v_{2}=A^{-1}\begin{bmatrix} \frac{-2a-2b}{3}\\ \frac{-a+4b}{3} \end{bmatrix}$