Find the points on the ellipsoid $x^2 + 2y^2 + 3z^2 = 1$, where the tangent plane is parallel to the plane $3x - y + 3z = 1$.
I'm not sure how to go about solving this. I'd appreciate some help.
Find the points on the ellipsoid $x^2 + 2y^2 + 3z^2 = 1$, where the tangent plane is parallel to the plane $3x - y + 3z = 1$.
I'm not sure how to go about solving this. I'd appreciate some help.
Let the contact point be $(X,Y,Z)$, now the tangent plane is
$$Xx+2Yy+3Zz=1$$
Comparing coefficients, $$X:2Y:3Z=3:-1:3$$
That is $$\frac{X}{3}=\frac{2Y}{-1}=\frac{3Z}{3}=k$$
Now substitute $(X,Y,Z)=\left( 3k,-\dfrac{k}{2},k \right)$ into $x^{2}+2y^{2}+3z^{2}=1$
We have \begin{align*} (3k)^{2}+2\left( -\frac{k}{2} \right)^{2}+3(k)^{2} &= 1 \\ \frac{25}{2}k^{2} &= 1 \\ k &= \pm \frac{\sqrt{2}}{5} \\ (X,Y,Z) &= \left( \pm \frac{3\sqrt{2}}{5}, \mp \frac{1}{5\sqrt{2}}, \pm \frac{\sqrt{2}}{5} \right) \end{align*}
Let the equation of the ellipsoid be $f(x, y, z) = x^2 + 2y^2 + 3z^2 = 1$. The gradient is $\nabla f(a, b, c) = \langle2a, 4b, 6c\rangle$
We are looking for the points on the ellipsoid where the tangent plane is parallel to a provided plane, $ 3x - y + 3z = 1 $. In order for any plane to be parallel to another, the planes' normal vectors must be multiples of each other. The normal vector of the provided plane is $ \vec{n_1} = \langle3, -1, 3\rangle$. Gradients are normal to level surfaces, so the gradient $\nabla f(a, b, c) $ will be normal to the tangent planes to the ellipsoid. If $k$ is a scalar value, we thus need to find where $k\vec{n_1}=\nabla f(a, b, c)$
$k\langle3, -1, 3\rangle=\langle2a, 4b, 6c\rangle$
$a=\frac{3k}{2}\\ b=\frac{-k}{4}\\ c=\frac{k}{2}$
All points $\left(\frac{3k}{2}, \frac{-k}{4}, \frac{k}{2}\right)$ that lie on the ellipsoid will satisfy the question's requirements (parallel tangent planes). Plugging this into the ellipsoid equation to solve for valid k values, we get
$$\left(\frac{3}{2}k\right)^2 + 2\left(\frac{-1}{4}k\right)^2 + 3\left(\frac{1}{2}k\right)^2 = 1$$ Simplifying a bit: $$\frac{9}{4}k^2 + \frac{1}{8}k^2 + \frac{3}{4}k^2 = 1$$ $$\frac{25}{8}k^2 = 1$$ $$k = \pm\frac{2\sqrt2}{5}$$ Now, plug in $k$ to get the points on the ellipsoid where the tangent plane is parallel to the given plane: $$\langle\pm\frac{3\sqrt2}{5}, \mp\frac{\sqrt2}{10}, \pm\frac{\sqrt2}{5}\rangle$$
Consider the function $f(x,y,z) = x^2+2y^2+3z^2-1$ then the $E$=ellipsoid is given by $f^{-1}(0)$ i.e a level surface. Let $p \in E$ then $\nabla f(p)$ is a normal vector for the tangent plane. For the tangent plane to be parallel to $3x-y+3z=1$, you need $p \in E$ such that $\nabla f(p) = \lambda \langle 3,-1,3\rangle$.