Prove that, if $x_n \geq 0$, $a > 0$, $n\in \mathbb{N}$, $\lim_{n\to\infty} x_n = a$ then
$$\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$$
It looks kind of obvious but I'm having trying to prove it.
My attempt:
Let assume the opposite That is, if $x_n \geq 0$, $a > 0$, $n\in \mathbb{N}$, $\lim_{n\to\infty} x_n = a$ then
$$\lim_{n\to\infty} \sqrt{x_n} = b \neq \sqrt{a}$$
Then it follows that $b^2 \neq a$. But, by applying one of the properties of arithmetic with limits we have that
$$a = \lim_{n\to\infty} x_n = \lim_{n\to\infty} \sqrt{x_n}\cdot \lim_{n\to\infty} \sqrt{x_n} = b \cdot b = b^2 $$
which contradicts our first assumption. Then it follows that:
$$\lim_{n\to\infty} \sqrt{x_n} = b \neq \sqrt{a}$$
Is this okay? I'm not quite convinced.