Evaluation of $\displaystyle \int^{\frac{\pi}{2}}_{0}\frac{\cos^6 x}{\sin x+\cos x}dx$
$\bf{My\; Try::}$ Let $\displaystyle I = \int^{\frac{\pi}{2}}_{0}\frac{\cos^6 x}{\sin x+\cos x}dx = \int^{\frac{\pi}{2}}_{0}\frac{\sin^6 x}{\sin x+\cos x}dx$
Above we have used $\displaystyle \int^{a}_{0}f(x)dx = \int^{a}_{0}f(a-x)dx$
So $$2I = \int^{\frac{\pi}{2}}_{0}\frac{\sin^6 x+\cos^6 x}{\sin x+\cos x}dx = \int^{\frac{\pi}{2}}_{0}\frac{(\sin^2 x+\cos^2 x)(\sin^4 x+\cos^4 x-\sin^2 x\cos^2 x)}{\sin x+\cos x}dx$$
So $$2I = \int^{\frac{\pi}{2}}_{0}\frac{\sin^4 x+\cos^4 x-\sin^2 x\cos^2 x}{\sin x+\cos x}dx = \int^{\frac{\pi}{2}}_{0}\frac{1-3\sin^2 x\cos^2 x}{\sin x+\cos x}dx$$
Now How can i solve it after that, Help Required, Thanks