Suppose we seek to verify that
$${n\brace m} =
\sum_{k=m}^n {k\choose m}
\sum_{q=0}^k (-1)^{n+q}
{n+q-m\brace k}
(-1)^{k+q} \left[k\atop q\right] {n\choose n+q-m}$$
which is
$${n\brace m} = (-1)^n
\sum_{k=m}^n {k\choose m} (-1)^k
\sum_{q=0}^k
{n+q-m\brace k}
\left[k\atop q\right] {n\choose m-q}$$
where presumably $n\ge m.$ We need for the second binomial coefficient
that $m\ge q$ so this is
$${n\brace m} = (-1)^n
\sum_{k=m}^n {k\choose m} (-1)^k
\sum_{q=0}^m
{n+q-m\brace k}
\left[k\atop q\right] {n\choose m-q}.$$
Observe that the Stirling number of the second kind vanishes when
$k\gt n$ so we may extend the summation to infinity, getting
$${n\brace m} = (-1)^n
\sum_{k\ge m} {k\choose m} (-1)^k
\sum_{q=0}^m
{n+q-m\brace k}
\left[k\atop q\right] {n\choose m-q}.$$
Recall that
$$\left[k\atop q\right] = [w^q] k! \times {w+k-1\choose k}.$$
Starting with the inner sum we obtain
$$n! \sum_{q=0}^m
\frac{1}{(m-q)!}
[z^{n+q-m}] (\exp(z)-1)^k
[w^q] {w+k-1\choose k}
\\ = n! \sum_{q=0}^m
\frac{1}{q!}
[z^{n-q}] (\exp(z)-1)^k
[w^{m-q}] {w+k-1\choose k}.$$
Now when $q\gt m$ the coefficient extractor in $w$ yields zero, hence
we may extend the sum in $q$ to infinity:
$$n! \sum_{q\ge 0}
\frac{1}{q!}
[z^{n-q}] (\exp(z)-1)^k
[w^{m-q}] {w+k-1\choose k}.$$
We thus obtain
$$\frac{n!}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
(\exp(z)-1)^k
\frac{1}{2\pi i}
\int_{|w|=\gamma} \frac{1}{w^{m+1}}
{w+k-1\choose k}
\sum_{q\ge 0} \frac{1}{q!} z^q w^q
\; dw \; dz
\\ = \frac{n!}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
(\exp(z)-1)^k
\frac{1}{2\pi i}
\int_{|w|=\gamma} \frac{1}{w^{m+1}}
{w+k-1\choose k}
\exp(zw)
\; dw \; dz.$$
Preparing the outer sum we obtain
$$\sum_{k\ge m} {k\choose m} (-1)^k
(\exp(z)-1)^k {w+k-1\choose k}
\\ = \sum_{k\ge m} {k\choose m} (-1)^k
(\exp(z)-1)^k [v^k] \frac{1}{(1-v)^w}.$$
Note that for a formal power series $Q(v)$ we have
$$\sum_{k\ge m} {k\choose m} (-1)^{k-m} u^{k-m} [v^k] Q(v)
= \frac{1}{m!} \left.(Q(v))^{(m)}\right|_{v=-u}.$$
We get for the derivative in $v$
$$\left(\frac{1}{(1-v)^w}\right)^{(m)} =
m! {w+m-1\choose m} \frac{1}{(1-v)^{w+m}}.$$
Substituting $u=\exp(z)-1$ yields
$$m! {w+m-1\choose m} \exp(-(w+m)z).$$
Returning to the double integral we find
$$\frac{(-1)^n\times n!}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
(\exp(z)-1)^m (-1)^m
\\ \times
\frac{1}{2\pi i}
\int_{|w|=\gamma} \frac{1}{w^{m+1}}
\exp(zw)
{w+m-1\choose m} \exp(-(w+m)z)
\; dw \; dz
\\ = \frac{(-1)^n\times n!}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
(\exp(z)-1)^m (-1)^m \exp(-mz)
\\ \times
\frac{1}{2\pi i}
\int_{|w|=\gamma} \frac{1}{w^{m+1}}
{w+m-1\choose m}
\; dw \; dz
\\ = \frac{(-1)^n\times n!}{2\pi i \times m!}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
(\exp(z)-1)^m (-1)^m \exp(-mz) \; dz
\\ = \frac{(-1)^n\times n!}{2\pi i \times m!}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
(1-\exp(-z))^m (-1)^m \; dz
\\ = \frac{(-1)^n\times n!}{2\pi i \times m!}
\int_{|z|=\epsilon} \frac{1}{z^{n+1}}
(\exp(-z)-1)^m \; dz.$$
Finally put $z=-v$ to get
$$-\frac{(-1)^n\times n!}{2\pi i \times m!}
\int_{|v|=\epsilon} \frac{(-1)^{n+1}}{v^{n+1}}
(\exp(v)-1)^m \; dv
\\ = \frac{n!}{2\pi i \times m!}
\int_{|v|=\epsilon} \frac{1}{v^{n+1}}
(\exp(v)-1)^m \; dv.$$
This is
$$n! [v^n] \frac{(\exp(v)-1)^m}{m!} = {n\brace m}$$
and we have the claim.