Here we are looking for binary strings of length $N$ which do not contain the substring $11011$. The result is then $2^N$ minus this number.
The so-called Goulden-Jackson Cluster Method is a convenient technique to derive a generating function for problems of this kind.
We consider words of length $N\geq 0$ built from an alphabet $$\mathcal{V}=\{0,1\}$$ and the set $\mathcal{B}=\{11011\}$ of bad words which are not allowed to be part of the words we are looking for.
We derive a function $F(x)$ with the coefficient of $x^N$ being the number of wanted words of length $n$.
According to the paper (p.7) the generating function $F(x)$ is
\begin{align*}
F(x)=\frac{1}{1-dx-\text{weight}(\mathcal{C})}
\end{align*}
with $d=|\mathcal{V}|=2$, the size of the alphabet and with the weight-numerator $\mathcal{C}$ with
\begin{align*}
\text{weight}(\mathcal{C})=\text{weight}(\mathcal{C}[11011])
\end{align*}
We calculate according to the paper
\begin{align*}
\text{weight}(\mathcal{C}[11011])&=-x^5-\text{weight}(\mathcal{C}[11011])\left(x^3+x^4\right)
\end{align*}
It follows:
A generating function $F(x)$ for the number of words built from $\{0,1\}$ which do not contain the subword $11011$ is
\begin{align*}
F(x)&=\frac{1}{1-dx-\text{weight}(\mathcal{C})}\\
&=\frac{1}{1-2x+\frac{x^5}{1+x^3+x^4}}\\
&=\frac{1+x^3+x^4}{1-2x+x^3-x^4-x^5}
\end{align*}
Since the generating function counting the number $2^N$ of all binary strings of length $N$ is
\begin{align*}
\frac{1}{1-2x}=1+2x+4x^2+\cdots
\end{align*}
We conclude: A generating function for the number binary strings of length $N$ which contain the string $11011$ is
\begin{align*}
\frac{1}{1-2x}-F(x)&=\frac{1}{1-2x}-\frac{1+x^3+x^4}{1-2x+x^3-x^4-x^5}\\
&=\frac{x^5}{(1-2x)(1-2x+x^3-x^4-x^5)}\\
&=x^5+4x^6+12x^7+31x^8+75x^9+175x^{10}\\
&\qquad 399x^{11}+894x^{12}+1975x^{13}+4313x^{14}+9330x^{15}+\cdots
\end{align*}
The last line (1) was calculated with the help of Wolfram Alpha and we see the number of solutions of strings with length up to $N=15$.
For example the $12$ strings of length $7$ containing the substring $11011$ are
\begin{array}{cccc}
\color{blue}{00}11011\quad&\quad\color{blue}{0}11011\color{blue}{0}\quad&\quad11011\color{blue}{00}\\
\color{blue}{01}11011\quad&\quad\color{blue}{0}11011\color{blue}{1}\quad&\quad11011\color{blue}{01}\\
\color{blue}{10}11011\quad&\quad\color{blue}{1}11011\color{blue}{0}\quad&\quad11011\color{blue}{10}\\
\color{blue}{11}11011\quad&\quad\color{blue}{1}11011\color{blue}{1}\quad&\quad11011\color{blue}{11}\\
\end{array}