We show that the $\liminf$ inequality implies the $\limsup$ inequality (the other way is similar).
Consider the sequence $\{A_n^c\}_{n\geq 1}$. We have that by De Morgan's laws:
$$\liminf_{n\to \infty} A_n^c = \bigcup_{n \ge 1} \bigcap_{k\ge n} A_k^c=\bigcup_{n \ge 1}\left( \bigcup_{k\ge n} A_k\right)^c
=\left(\bigcap_{n \ge 1} \bigcup_{k\ge n} A_k\right)^c=\left(\limsup_{n\to \infty} A_n\right)^c.$$
Therefore
$$1-\limsup_{n\to \infty} P(A_n)=\liminf_{n\to \infty} (1-P(A_n))\\=\liminf_{n\to \infty} P(A_n^c)\geq P(\liminf_{n\to \infty} A_n^c)=1-P(\limsup_{n\to \infty} A_n)$$
which implies $$\limsup_{n\to \infty} P(A_n)\leq P(\limsup_{n\to \infty} A_n).$$
P.S. We include a proof of the $\liminf$ inequality (my first answer where a miss OP's request about equivalence).
By definition
$$\liminf_{n\to \infty} A_n = \bigcup_{n \ge 1} \bigcap_{k\ge n} A_k.$$
Since for any $n$, $\cap_{k\ge n} A_k \subseteq A_n$, it follows that $P(\cap_{k\ge n} A_k) \le P(A_n)$. Hence
$$\liminf_{n\to \infty} P\left(\bigcap_{k \ge n} A_k\right) \le \liminf_{n\to \infty} P(A_n)\tag{2}$$
Moreover the sequence $\{\cap_{k\ge n} A_k\}_{n\geq 1}$ is increasing and by continuity of $P$ from below,
$$P(\liminf A_n) = \lim_{n\to \infty} P\left(\bigcap_{k \ge n} A_k\right)=\liminf_{n\to \infty} P\left(\bigcap_{k \ge n} A_k\right).$$