So, this ends up being a proof of the full AM-GM. Oh well.
Suppose first that $n$ is a power of $2$, and let $n = 2^m$. The term $x_1^n+\dots+x_n^n - nx_1x_2\dots x_n$ can be written as a sum of squares as follows:
$$x_1^n+\dots+x_n^n - nx_1x_2\dots x_n = \sum\limits_{k=0}^{m-1}{2^k\sum\limits_{j=0}^{2^{m-k-1}-1}{\left(\prod\limits_{i=1}^{2^k}{x_{2^k(2j)+i}^{2^{m-k-1}}}-\prod\limits_{i=1}^{2^k}{x_{2^k(2j+1)+i}^{2^{m-k-1}}}\right)^2}}$$
or, written less formally,
\begin{align} x_1^n+\dots+x_n^n - nx_1x_2\dots x_n =& (x_1^{n/2}-x_2^{n/2})^2+(x_3^{n/2}-x_4^{n/2})^2 + \dots \\
&+2[(x_1^{n/4}x_2^{n/4}-x_3^{n/4}x_4^{n/4})^2 + (x_5^{n/4}x_6^{n/4}-x_7^{n/4}x_8^{n/4})^2+\dots] \\
&+\dots \\
&+\frac{n}{4}[(x_1^2x_2^2\dots x_{n/4}^2 - x_{n/4+1}^2\dots x_{n/2}^2)^2 + (x_{n/2+1}^2\dots x_{3n/4}^2 - x_{3n/4+1}^2+\dots x_n^2)^2] \\
&+\frac{n}{2}(x_1x_2\dots x_{n/2} - x_{n/2+1}\dots x_n)^2.
\end{align}
For example, if $n=4\implies m=2$, then
\begin{align} x_1^4+x_2^4+x_3^4+x_4^4-4x_1x_2x_3x_4 &= \sum\limits_{k=0}^{1}{2^k\sum\limits_{j=0}^{2^{1-k}-1}{\left(\prod\limits_{i=1}^{2^k}{x_{2^k(2j)+i}^{2^{1-k}}}-\prod\limits_{i=1}^{2^k}{x_{2^k(2j+1)+i}^{2^{1-k}}}\right)^2}} \\
&=1\left(\sum\limits_{j=0}^{1}{\left(\prod\limits_{i=1}^{1}{x_{2j+i}^2}-\prod\limits_{i=1}^{1}{x_{2j+1+i}^2}\right)^2}\right) \\
&+ 2\left(\sum\limits_{j=0}^{0}{\left(\prod\limits_{i=1}^{2}{x_{2(2j)+i}} - \prod\limits_{i=1}^{2}{x_{2(2j+1)+i}}\right)^2}\right) \\
&=\left[(x_1^2-x_2^2)^2+(x_3^2-x_4^2)^2\right] + 2(x_1x_2-x_3x_4)^2.
\end{align}
One can check that for $n=8$ we obtain
\begin{align*} x_1^8+x_2^8+\dots+x_8^8 - 8x_1x_2\dots x_8 =& (x_1^4-x_2^4)^2+(x_3^4-x_4^4)^2+(x_5^4-x_6^4)^2+(x_7^4-x_8^4)^2 \\
&+2(x_1^2x_2^2-x_3^2x_4^2)^2+2(x_5^2x_6^2-x_7^2x_8^2)^2 \\
&+4(x_1x_2x_3x_4-x_5x_6x_7x_8)^2.
\end{align*}
The idea is the following: we try to "complete the square" on terms like $x_1^n+x_2^n$ to yield $x_1^n+x_2^n = (x_1^{n/2}-x_2^{n/2})^2 + 2x_1^{n/2}x_2^{n/2}$, and similarly for the other terms. After collecting the squares and factoring out a $2$, we are left with $x_1^{n/2}x_2^{n/2} + x_3^{n/2}x_4^{n/2} + \dots$, so we try the same process, yielding $x_1^{n/2}x_2^{n/2} + x_3^{n/2}x_4^{n/2} = (x_1^{n/4}x_2^{n/4} - x_3^{n/4}x_4^{n/4})^2 + 2x_1^{n/4}x_2^{n/4}x_3^{n/4}x_4^{n/4}$, and so on. We continue this until we are left with a leftover term where all of the exponents are $1$, and this term will precisely be $nx_1x_2\dots x_n$. This process can be made into a rigorous proof by applying the i-word that the OP seems intent on not using.
So with this decomposition as a sum of squares, it is clear that $x_1^n+x_2^n+\dots x_n^n - nx_1x_2\dots x_n\ge 0$, and hence
$$\frac{x_1^n+x_2^n+\dots x_n^n}{n}\ge x_1x_2\dots x_n.$$
The inequality follows by replacing $x_i$ with $x_i^{1/n}$.
Now, if $n$ is not a power of $2$, let $n'$ be a power of $2$ greater than $n$. If $s = \frac{x_1+\dots+x_n}{n}$, then if we consider the sequence $\{x_1,\dots,x_n,s,\dots,s\}$ where $s$ is repeated $n'-n$ times, by AM-GM in the special case we have
$$(x_1\dots x_n s\dots s)^{1/n'}\le \frac{x_1+\dots+x_n+s+\dots+s}{n'} = \frac{ns+(n'-n)s}{n'} = s$$
and hence
$$x_1\dots x_n s^{n'-n}\le s^{n'}\implies x_1\dots x_n\le s^n$$
thus yielding the full AM-GM inequality.