3

Possible Duplicate:
Possibility to simplify $\sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}} = \frac{\pi }{{\sin \pi a}}} $

Given that $0 < a < 1$ how to evaluate by the method of residues $$ \int_{-\infty}^\infty {e^{ax} \over 1 +e^x } \; dx $$

hasExams
  • 2,285

2 Answers2

4

Substituting $u=e^x$, so that $dx = \dfrac{du}{u}$, the integral becomes

$$\int_0^{\infty} \dfrac{u^{a-1}}{1+u}du$$

How might you solve this? You've tagged the question as homework, so I'll leave it here for now, but if you're still stuck, post in the comments.

3

Recalling the $\beta$ function,

$$ \beta( n,m ) = \int_{0}^{1} u^{n-1}\,(1-u)^{m-1}\, du = \frac{\Gamma(n)\Gamma(m)}{\Gamma(m+n)} \,.$$

Using the substitution $ 1+u=\frac{1}{t} $ casts $ \int_0^{\infty} \dfrac{u^{a-1}}{1+u}du $ in terms of the $\beta$ function,

$$\int_0^{\infty} \frac{u^{a-1}}{1+u}du = \int _{0}^{1}\!{t}^{-a} \left( 1-t \right) ^{a-1}{dt} =\Gamma(a)\Gamma(1-a) = \frac{\pi}{\sin (a \pi )} \,. $$

  • @Downvoter:I do not know what you are downvoting for. I gave a way to evaluate the integral in a way different from the complex techniques. – Mhenni Benghorbal Sep 05 '12 at 21:04