Possible Duplicate:
Possibility to simplify $\sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}} = \frac{\pi }{{\sin \pi a}}} $
Given that $0 < a < 1$ how to evaluate by the method of residues $$ \int_{-\infty}^\infty {e^{ax} \over 1 +e^x } \; dx $$