This is an excerpt from Discrete Mathematics.
Universal generalization is the rule of inference that states that ∀xP(x) is true, given the premise that P(c) is true for all elements c in the domain. Universal generalization is used when we show that ∀xP(x) is true by taking an arbitrary element c from the domain and showing that P(c) is true. The element c that we select must be an arbitrary, and not a specific, element of the domain.
That is, when we assert from ∀xP(x) the existence of an element c in the domain, we have no control over c and cannot make any other assumptions about c other than it comes from the domain. Universal generalization is used implicitly in many proofs in mathematics and is seldom mentioned explicitly. However, the error of adding unwarranted assumptions about the arbitrary element c when universal generalization is used is all too common in incorrect reasoning.
I have two questions:
1. What is meant by the second paragraph ?
2. How come just by taking arbitrary c in domain, we can conclude that if P(c) is true then so is ∀xP(x). (There may exist some counterexamples).