Possible Duplicate:
Intuitive explanation for the identity $\sum\limits_{k=1}^n {k^3} = \left(\sum\limits_{k=1}^n k\right)^2$
How can one prove that $$(1^3+2^3+3^3+\cdots+n^3)=(1+2+3+\cdots+n)^2$$
Let $T_1=(1+2+3+\cdots+n)=\dfrac{n(n+1)}{2}$.
Now, $T_2=(1^2+2^2+3^2+\cdots+n^2)$.
$T_2=((1^2+n^2)+(2^2+(n-1)^2)+(3^2+(n-2)^2)+\cdots+(\frac{n+1}{2})^2)$, when $n$ is odd
$T_2=((1^2+n^2)+(2^2+(n-1)^2)+(3^2+(n-2)^2)+\cdots+(k^2+(n-k+1)^2))$, when $n$ is even, where, $k=\frac{n}{2}$