Evaluate: $$\prod_{i=1}^{89} \sin (i)$$
My attempt:We know that
$\sin \alpha \cdot \sin(90- \alpha)=\sin \alpha \cos \alpha=\frac{1}{2}\sin 2\alpha$
Then we have:
$$ (\sin1\cdot\sin89)(\sin2\cdot\sin88)\cdots (\sin44\cdot\sin46)\sin45 =\left(\frac{1}{2}\sin2\right)\cdots\left(\frac{1}{2}\sin88\right)\frac{\sqrt{2}}{2} $$
Factorize from $\frac{1}{2}$ then do the same thing again You will get:
$$ \frac{\sqrt{2}}{2^{67}}(\sin4\cdot\sin8\cdots\sin88) $$
Now what to do?Any hints?
$$\prod_{n=1}^{89} \sin (n) = \frac{3 \sqrt{10}}{2^{89}}$$
– Tolaso Aug 06 '16 at 14:10