I made one up of the kind you wanted,
$$ 3 x^2 = 5 y^2 + 7 z^2. $$ This has a solution because $12 = 5 + 7.$
I was quite surprised that it took four of the Fricke-Klein recipes to account for all of the first three dozen or so primitive integer solutions. I probably have them all, but that needs a proof. First I will put the solutions with $x$ up to some bound, then the section of the program that shows the four 3 by 3 matrices as coefficients of binary quadratic forms. Maybe tomorrow I will also typeset that.
Why not... the four coefficient matrices are
$$
\left(
\begin{array}{rrr}
18 & 2 & 2 \\
12 & 6 & -1 \\
-6 & 6 & 1
\end{array}
\right)
$$
$$
\left(
\begin{array}{rrr}
12 & -2 & 3 \\
6 & 6 & -2 \\
-6 & 6 & 1
\end{array}
\right)
$$
$$
\left(
\begin{array}{rrr}
11 & 6 & 4 \\
2 & 10 & 2 \\
-7 & -2 & 2
\end{array}
\right)
$$
$$
\left(
\begin{array}{rrr}
26 & 22 & 6 \\
1 & 10 & 4 \\
17 & 14 & 2
\end{array}
\right)
$$
Next morning. This made much more sense after I looked at the positive binary forms of discriminant $-140,$ including the two imprimitive $\langle 2,2,18 \rangle$ and $\langle 6,2,6 \rangle,$ primitive forms (out of six total) $\langle 3,2,12 \rangle$ and $\langle 4,2,9 \rangle.$ I could, with the same results, have taken the four matrices as
$$
\left(
\begin{array}{rrr}
2 & 2 & 18 \\
-1 & -8 & 5 \\
1 & -4 & -11
\end{array}
\right)
$$
$$
\left(
\begin{array}{rrr}
6 & 2 & 6 \\
4 & 6 & -3 \\
2 & -6 & -3
\end{array}
\right)
$$
$$
\left(
\begin{array}{rrr}
3 & 2 & 12 \\
-2 & -6 & 6 \\
1 & -6 & -6
\end{array}
\right)
$$
$$
\left(
\begin{array}{rrr}
4 & 2 & 9 \\
2 & -6 & -6 \\
2 & 6 & -3
\end{array}
\right)
$$
One thing you can do by hand, to understand this a little better, is take each of these four matrices, one at a time, call it $P,$ and calculate $P^T HP,$ where $H$ is the diagonal matrix $\operatorname{diag}(-3,5,7)$
===================================
x y z u v x form:
2 -1 1 gcd 1 0 1 18 2 2
2 -1 1 gcd 1 0 -1 18 2 2
3 -2 1 gcd 1 0 1 12 -2 3
3 -2 1 gcd 1 0 -1 12 -2 3
11 2 -7 gcd 1 1 0 11 6 4
13 10 1 gcd 1 1 1 12 -2 3
17 -2 -11 gcd 1 1 -1 12 -2 3
18 5 -11 gcd 1 1 -1 18 2 2
22 17 1 gcd 1 1 1 18 2 2
26 1 17 gcd 1 1 0 26 22 6
29 -10 17 gcd 1 1 -3 11 6 4
34 25 -7 gcd 1 1 -4 26 22 6
47 34 -11 gcd 1 2 1 12 -2 3
54 -41 -7 gcd 1 3 -5 26 22 6
58 -43 -11 gcd 1 1 -5 18 2 2
66 -47 17 gcd 1 3 -4 26 22 6
66 -5 -43 gcd 1 3 -7 26 22 6
78 17 49 gcd 1 1 5 18 2 2
78 59 -11 gcd 1 2 1 18 2 2
79 -34 -43 gcd 1 3 -2 11 6 4
81 2 53 gcd 1 1 -5 11 6 4
94 37 53 gcd 1 1 2 26 22 6
97 -74 -11 gcd 1 1 -5 12 -2 3
99 74 17 gcd 1 1 4 11 6 4
102 -37 -59 gcd 1 2 -5 18 2 2
102 -79 1 gcd 1 1 -7 18 2 2
103 34 61 gcd 1 2 5 12 -2 3
109 -82 17 gcd 1 3 -5 11 6 4
117 34 -71 gcd 1 3 -1 12 -2 3
121 50 -67 gcd 1 3 1 11 6 4
142 83 61 gcd 1 2 5 18 2 2
142 -85 -59 gcd 1 2 -7 18 2 2
143 -86 -59 gcd 1 2 -5 12 -2 3
146 -101 -43 gcd 1 5 -9 26 22 6
146 67 77 gcd 1 1 3 26 22 6
151 86 -67 gcd 1 3 2 11 6 4
153 94 61 gcd 1 3 5 12 -2 3
158 89 -71 gcd 1 3 -1 18 2 2
166 127 17 gcd 1 1 -7 26 22 6
166 -41 -103 gcd 1 5-11 26 22 6
167 10 109 gcd 1 2 7 12 -2 3
169 -94 77 gcd 1 3 -7 11 6 4
173 -134 1 gcd 1 1 -7 12 -2 3
174 109 -67 gcd 1 3-10 26 22 6
174 -17 113 gcd 1 3 -1 26 22 6
187 118 -71 gcd 1 4 1 12 -2 3
191 134 53 gcd 1 1 6 11 6 4
194 1 -127 gcd 1 5-12 26 22 6
198 83 109 gcd 1 2 7 18 2 2
206 -131 77 gcd 1 5 -6 26 22 6
211 -94 113 gcd 1 3 -8 11 6 4
213 82 121 gcd 1 3 7 12 -2 3
213 -86 -119 gcd 1 3 -5 12 -2 3
218 -67 -131 gcd 1 3 -7 18 2 2
219 -118 -103 gcd 1 5 -4 11 6 4
219 50 137 gcd 1 1 -8 11 6 4
221 -82 -127 gcd 1 5 -3 11 6 4
223 -158 -59 gcd 1 2 -7 12 -2 3
227 166 49 gcd 1 4 5 12 -2 3
234 163 -67 gcd 1 3-11 26 22 6
239 -178 -43 gcd 1 5 -6 11 6 4
242 173 61 gcd 1 3 5 18 2 2
249 170 77 gcd 1 1 7 11 6 4
249 2 -163 gcd 1 5 -1 11 6 4
261 -202 -7 gcd 1 5 -7 11 6 4
281 74 173 gcd 1 1 -9 11 6 4
282 167 -119 gcd 1 4 -1 18 2 2
282 -43 181 gcd 1 1 11 18 2 2
283 166 121 gcd 1 4 7 12 -2 3
286 109 -163 gcd 1 5-14 26 22 6
286 151 137 gcd 1 1 5 26 22 6
286 -185 -103 gcd 1 7-13 26 22 6
289 218 -43 gcd 1 3 5 11 6 4
293 178 -119 gcd 1 5 1 12 -2 3
297 -170 -131 gcd 1 3 -7 12 -2 3
298 215 -71 gcd 1 4 1 18 2 2
298 47 -191 gcd 1 4 -5 18 2 2
302 185 121 gcd 1 3 7 18 2 2
306 43 197 gcd 1 3 1 26 22 6
307 -74 -191 gcd 1 4 -5 12 -2 3
313 118 -179 gcd 1 5 -1 12 -2 3
314 -101 -187 gcd 1 7-15 26 22 6
314 235 53 gcd 1 1 -9 26 22 6
319 -82 197 gcd 1 3-10 11 6 4
334 -251 53 gcd 1 7-10 26 22 6
338 -211 -131 gcd 1 3-11 18 2 2
346 -47 -223 gcd 1 7-16 26 22 6
351 158 -187 gcd 1 5 2 11 6 4
353 -170 181 gcd 1 1 11 12 -2 3
358 -277 -11 gcd 1 2-13 18 2 2
358 59 229 gcd 1 2 11 18 2 2
367 -86 229 gcd 1 2 11 12 -2 3
374 205 173 gcd 1 1 6 26 22 6
374 -257 113 gcd 1 7 -9 26 22 6
374 -89 233 gcd 1 5 -3 26 22 6
377 262 109 gcd 1 5 7 12 -2 3
382 -79 241 gcd 1 1 13 18 2 2
389 254 137 gcd 1 1 9 11 6 4
397 -302 49 gcd 1 1-11 12 -2 3
401 218 -187 gcd 1 5 3 11 6 4
421 326 -7 gcd 1 3 7 11 6 4
422 -295 -119 gcd 1 3-13 18 2 2
423 250 -179 gcd 1 6 1 12 -2 3
429 134 257 gcd 1 1-11 11 6 4
429 -202 -223 gcd 1 7 -5 11 6 4
431 -250 -187 gcd 1 7 -6 11 6 4
442 -193 -239 gcd 1 4-11 18 2 2
442 269 -179 gcd 1 5 -1 18 2 2
442 311 121 gcd 1 4 7 18 2 2
446 85 -283 gcd 1 7-18 26 22 6
447 178 -251 gcd 1 6 -1 12 -2 3
447 346 -11 gcd 1 6 5 12 -2 3
449 -94 -283 gcd 1 7 -3 11 6 4
454 -59 293 gcd 1 5 -2 26 22 6
459 -334 -103 gcd 1 7 -8 11 6 4
467 118 289 gcd 1 4 11 12 -2 3
471 302 173 gcd 1 1 10 11 6 4
471 -34 -307 gcd 1 7 -2 11 6 4
474 -293 -187 gcd 1 9-17 26 22 6
474 -335 -127 gcd 1 9-16 26 22 6
478 41 -311 gcd 1 5 -7 18 2 2
486 373 -43 gcd 1 3-14 26 22 6
491 -262 233 gcd 1 5-12 11 6 4
493 -254 241 gcd 1 1 13 12 -2 3
499 386 17 gcd 1 3 8 11 6 4
jagy@phobeusjunior:~$
====================================
if ( twogcd(u,v) == 1)
{
int x = 18 * u * u + 2 * u * v + 2 * v * v;
int y = 12 * u * u + 6 * u * v - 1 * v * v;
int z = -6 * u * u + 6 * u * v + 1 * v * v;
int g = threegcd(x,y,z);
if ( x < 500 && g == 1) cout << setw(8) << x << setw(8) << y << setw(8) << z << " gcd " << setw(4) << g << setw(8) << u << setw(3) << v << " 18 2 2 " << endl;
x = 12 * u * u - 2 * u * v + 3 * v * v;
y = 6 * u * u + 6 * u * v - 2 * v * v;
z = -6 * u * u + 6 * u * v + 1 * v * v;
g = threegcd(x,y,z);
if ( x < 500 && g == 1) cout << setw(8) << x << setw(8) << y << setw(8) << z << " gcd " << setw(4) << g << setw(8) << u << setw(3) << v << " 12 -2 3 " << endl;
x = 11 * u * u + 6 * u * v + 4 * v * v;
y = 2 * u * u + 10 * u * v + 2 * v * v;
z = -7 * u * u - 2 * u * v + 2 * v * v;
g = threegcd(x,y,z);
if ( x < 500 && g == 1) cout << setw(8) << x << setw(8) << y << setw(8) << z << " gcd " << setw(4) << g << setw(8) << u << setw(3) << v << " 11 6 4 " << endl;
x = 26 * u * u + 22 * u * v + 6 * v * v;
y = 1 * u * u + 10 * u * v + 4 * v * v;
z = 17 * u * u + 14 * u * v + 2 * v * v;
g = threegcd(x,y,z);
if ( x < 500 && g == 1) cout << setw(8) << x << setw(8) << y << setw(8) << z << " gcd " << setw(4) << g << setw(8) << u << setw(3) << v << " 26 22 6 " << endl;
}
====================================