3

$$|a\sin x+b \cos x|\leq \sqrt{a^2+b^2}$$

I have tried: $$|a\sin x+b \cos x|\leq |a+b|\leq \sqrt{a^2+b^2}$$

Suffices to prove: $$|a+b|\leq \sqrt{a^2+b^2}$$

But I can't find how to continue from here.

IraeVid
  • 3,216
gbox
  • 12,867

6 Answers6

13

Use Cauchy-Schwarz inequality : \begin{align}|a\sin x+b \cos x| = |(a,b)\cdot (\sin x,\cos x)| &\leq \sqrt{a^2+b^2}\sqrt{\sin^2 x+\cos^2 x}=\sqrt{a^2+b^2}.\end{align}

Daniel Fischer
  • 206,697
Arnaud D.
  • 20,884
6

$$|a \sin x + b \cos x|=\big|\sqrt{a^2+b^2}\left(\frac a{\sqrt{a^2+b^2}}\sin x+\frac b{\sqrt{a^2+b^2}}\cos x\right)\big|=$$ $$=\sqrt{a^2+b^2}|\left(\sin(x+\phi)\right)|\le\sqrt{a^2+b^2}$$

Roman83
  • 17,884
  • 3
  • 26
  • 70
  • can you please elaborate on the 2 move where did $sin(x+\phi)$ came – gbox Jun 21 '16 at 10:59
  • 3
    Ok. Let $\frac a{\sqrt{a^2+b^2}}= \sin \phi, \frac b{\sqrt{a^2+b^2}}=\cos \phi$. Really, $$\sin^2 \phi+\cos^2 \phi=\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}=1$$ and $|\sin \phi|=\frac a{\sqrt{a^2+b^2}}\le1$ Then $$sin x \sin \phi+\cos x \cos \phi=\sin(x+\phi)$$ – Roman83 Jun 21 '16 at 11:08
2

Find the extrema of

$$a\cos(x)+b\sin(x).$$

By canceling the derivative,

$$-a\sin(z)+b\cos(z)=0$$ or$$\tan(z)=\frac ba.$$

Then, with

$$\cos(z)=\pm\frac1{\sqrt{\tan^2(z)+1}}=\pm\frac a{\sqrt{a^2+b^2}},\\\sin(z)=\pm\frac{\tan(z)}{\sqrt{\tan^2(z)+1}}=\pm\frac b{\sqrt{a^2+b^2}},$$

you obtain

$$a\cos(z)+b\sin(z)=\pm\sqrt{a^2+b^2}.$$

Then for all $x$,

$$-\sqrt{a^2+b^2}\le a\cos(x)+b\sin(x)\le\sqrt{a^2+b^2}.$$

1

$$a\sin{x}+b\cos{x}=\sqrt{a^2+b^2}(\frac{a}{\sqrt{a^2+b^2}}\sin{x}+\frac{b}{\sqrt{a^2+b^2}}\cos{x}$$ now let $$\sin{\alpha}=\frac{b}{\sqrt{a^2+b^2}}$$ then $$\cos{\alpha}=\frac{a}{\sqrt{a^2+b^2}}$$ thus $$a\cos{x}+b\sin{x}=\sqrt{a^2+b^2}\sin({\alpha+x})<\sqrt{a^2+b^2}$$

avz2611
  • 3,658
1

Take two vectors: $v_1 = (a,b)$ and $v_2 = (\sin x, \cos x)$. Their scalar product is $(v_1, v_2) = |v_1||v_2|cos(\phi) = a \sin x + b \cos x$ where $\phi$ is the angle between $v_1$ and $v_2$, but $|v_1| = \sqrt{a^2 + b^2}, |v_2| = 1$.

Abstraction
  • 2,482
1

If we square the inequality we get $$a^2\sin^2 x+b^2\cos^2 x+2ab\sin x\cos x\leq a^2+b^2\\2ab\sin x\cos x\leq a^2(1-\sin^2 x) +b^2(1-\cos^2 x) =a^2\cos^2x+b^2\sin ^2 x\\0\leq a^2\cos^2x-2ab\sin x \cos x+b^2\cos^2 x=(a\cos x-b\sin x) ^2$$ The last equation is always true, and we can square inequality because both sides are positive.

kingW3
  • 13,496