1

Just like in the title, I'm asking for any hints for proving (propably simple) inequality:

$$ |x \sin \alpha + y \cos \alpha| \leq \sqrt{x^2 + y^2} $$

xorandiff
  • 393

2 Answers2

3

By C-S $$|x\sin\alpha+y\cos\alpha|\leq\sqrt{(\sin^2\alpha+\cos^2\alpha)(x^2+y^2)}=\sqrt{x^2+y^2}.$$

0

Use https://proofwiki.org/wiki/Brahmagupta-Fibonacci_Identity,

$$(x\cos t+y\sin t)^2+(x\sin t-y\cos t)^2=?$$