Continuing from Jim work, we will work on solution
$$x+tan^{-1} \frac x{\alpha}=n\pi$$
transform this to finding x of the followings,
$$\frac x{\alpha}=\tan (n\pi-x)= -\tan x$$
For solution, you can find answer in here
the linear function $y=-\frac x{\alpha}$ has many intersections with $y=\tan x$. One intersection $(x_n, y_n)$ in interval between $(n \pi -\frac {\pi}2, n \pi +\frac {\pi}2)$. Or $x_n = n \pi - \frac {\pi}2 + \epsilon_n$. Or because it is a period function, $x_n = n \pi + \frac {\pi}2 + \epsilon_n$
Replacing the root,
$$-\frac {n \pi + \frac {\pi}2 + \epsilon_n}{\alpha}= \tan (n \pi + \frac {\pi}2 + \epsilon_n)=\tan (\frac {\pi}2 + \epsilon_n)=-\frac 1{\tan \epsilon _n}$$
Thus, $$\frac {\alpha}{ \pi + \frac {\frac {\pi}2 + \epsilon_n}n}= n\tan \epsilon _n$$
when $n \rightarrow \infty$, $\epsilon_n \rightarrow \frac{\alpha}2$
This is a little different from the posted result $\frac{\alpha}{\pi}$