If $\ \{x_n\}$ converge to $x$ show that: $$\lim_{n\to\infty} \frac{1}{n}\sum_{k=1}^{n} x_k =x.$$
Let choose an $\epsilon>0$, then $\exists N_1\in \mathbb{N}$ such that $\forall n\geq N_1$ we have $|x_n-x|<\epsilon/2.$
\begin{array}{} \displaystyle\frac{1}{n}\sum_{k=1}^{n} x_k-x &= \displaystyle \frac{x_1+x_2+...+x_n}{n}-x\\ &=\displaystyle \frac{x_1+x_2+...+x_n-nx}{n} \end{array} Lets take the absolute value: \begin{array}{} \left|\displaystyle\frac{1}{n}\sum_{k=1}^{n} x_k-x \right| & =\left|\displaystyle \frac{x_1+x_2+...+x_n-nx}{n} \right| \\ & =\left| \displaystyle\frac{(x_1-x)+(x_2-x)+...(x_n-x)}{n} \right| \\ & \leq \left| \displaystyle\frac{x_1-x}{n}\right|+...+\left|\displaystyle\frac{x_n-x}{n}\right| & by \ the \ triangle \ inequality.\\ & = \displaystyle\frac{1}{n}\sum_{k=1}^{N_1-1} |x_k-x| + \displaystyle\frac{1}{n}\sum_{k=N_1}^{n} |x_k-x| \\ & = \displaystyle\frac{1}{n}\sum_{k=1}^{N_1-1} |x_k-x| + \displaystyle\frac{\epsilon}{2n}(n-N_1) & (\forall n\geq N_1: |x_n-x|<\epsilon/2.)\\ &\leq \displaystyle\frac{1}{n}\sum_{k=1}^{N_1-1} |x_k-x| + \displaystyle\frac{\epsilon}{2} \end{array}
By taking the limit of the first sum, we will get : $$\lim_{n \to \infty}\displaystyle\frac{1}{n}\sum_{k=1}^{N_1-1} |x_k-x| = 0.$$
It follows that $\exists N_2 \in \mathbb{N}$ such that $n\geq N_2$ we have : $$\displaystyle\frac{1}{n}\sum_{k=1}^{N_1-1} |x_k-x| < \displaystyle\frac{\epsilon}{2}.$$
Lets take $N=\max\{N_1,N_2\}$ then $\forall n\geq N$ $$\left|\displaystyle\frac{1}{n}\sum_{k=1}^{n} x_k-x \right| \leq \displaystyle\frac{\epsilon}{2} +\displaystyle\frac{\epsilon}{2} = \epsilon. $$