We refer to the following theorem:
Theorem. [1] If $B$ is a process such that all the finite-dimensional distributions are jointly normal, $\mathbb{E}B_s = 0$ for all $s$, $\mathrm{Cov}(B_s,B_t) = s$ when $s \leq t$, and the paths of $B_t$ are continuous, then $B$ is a Brownian motion.
Let $\hat{B}_t = t B_{1/t}$ for $t > 0$ and $\hat{B}_0 = 0$. Then everything is clear except for $\mathrm{Cov}(\hat{B}_s,\hat{B}_t) = s$ when $s \leq t$ and the continuity of sample paths.
First, observe that $0 \leq s \leq t$ implies $1/t \leq 1/s$. Thus
$$ \mathrm{Cov}(\hat{B}_s,\hat{B}_t) = \mathrm{Cov}(s B_{1/s}, t B_{1/t}) = st \, \mathrm{Cov}(B_{1/s}, B_{1/t}) = st (1/t) = s.$$
Next, for the continuity of $\hat{B}$, it suffices to show the continuity at zero, i.e.,
$$\lim_{t\to 0} \hat{B}_t = \lim_{t\to 0} t B_{1/t} = \lim_{t\to\infty} \frac{B_t}{t} = 0 \quad \text{a.s.},$$
or equivalently, for any $\epsilon > 0$,
$$ \mathbb{P} \left( \limsup_{t\to\infty} \frac{\left| B_t \right|}{t} > \epsilon \right) = 0. $$
To prove this, we claim the following inequality: For $\lambda, t > 0$,
$$ \mathbb{P} \left( \sup_{s\leq t} \left| B_s \right| \geq \lambda \right) \leq 2e^{-\lambda^2 / 2t}. $$
Indeed, let $a > 0$. Then $e^{aB_t}$ is a submartingale, thus Doob's martingale inequality shows that
$$ \mathbb{P} \left( \sup_{s\leq t} B_s \geq \lambda \right) = \mathbb{P} \left( \sup_{s\leq t} e^{aB_s} \geq e^{a\lambda} \right) \leq \frac{\mathbb{E}\left[ e^{aB_t} \right]}{e^{a\lambda}} = e^{a^2t/2 - a\lambda}. $$
Putting $a = \lambda / t$ to this inequality yields
$$ \mathbb{P} \left( \sup_{s\leq t} B_s \geq \lambda \right) \leq e^{-\lambda^2/2t}. $$
Then the claim follows by the symmetry of the Brownian motion.
Note that
$$ \begin{align*}
\sup_{n \leq s \leq n+1} \frac{\left| B_s \right|}{s} > \epsilon
& \quad \Longrightarrow \quad \exists s \in [n, n+1] \text{ such that } \left| B_s \right| > \epsilon s \\
& \quad \Longrightarrow \quad \exists s \in [n, n+1] \text{ such that } \left| B_s \right| > \epsilon n \geq \frac{\epsilon (n+1)}{2} \\
& \quad \Longrightarrow \quad \sup_{s \leq n+1} \left| B_s \right| \geq \frac{\epsilon (n+1)}{2}.
\end{align*}$$
Thus we have
$$ \begin{align*}
\mathbb{P} \left( \sup_{t \geq N} \frac{\left| B_t \right|}{t} > \epsilon \right)
&\leq \sum_{n=N}^{\infty} \mathbb{P} \left( \sup_{n \leq t \leq n+1} \frac{\left| B_t \right|}{t} > \epsilon \right)
\leq \sum_{n=N+1}^{\infty} \mathbb{P} \left( \sup_{s \leq n} \left| B_s \right| \geq \frac{\epsilon n}{2} \right) \\
&\leq 2 \sum_{n=N+1}^{\infty} e^{-\epsilon^2 n/8}
= O_{\epsilon}\left( e^{-\epsilon^2 N/8} \right).
\end{align*}$$
Therefore we have
$$\mathbb{P} \left( \limsup_{t\to\infty} \frac{\left| B_t \right|}{t} > \epsilon \right)
= \lim_{N\to\infty} \mathbb{P} \left( \sup_{t \geq N} \frac{\left| B_t \right|}{t} > \epsilon \right) = 0.$$
[1] Richard F. Bass (2011), Stochastic Processes, Cambridge University Press (Theorem 2.4)