1

I did it this way :

$$\lim_{x \to \frac{\pi}{2}} \frac{\tan(2*x)}{x - \frac{\pi}{2}}$$ now as $x \to \frac{\pi}{2}$, $\tan(2*x) \to \tan(\pi)$ and $x - \frac{\pi}{2} \to 0$
As $\tan(\pi) = 0$

$$\therefore \tan(2*x) \to 0$$

$\therefore$ we can write $$\lim_{x \to \frac{\pi}{2}} \frac{\tan(2*x)}{x - \frac{\pi}{2}}$$ As $$\lim_{x \to 0} \frac{\tan(x)}{x} = 1$$

Which is incorrect answer.

My second attempt :

$$\lim_{x \to \frac{\pi}{2}} \frac{\tan(2*x)}{x - \frac{\pi}{2}}$$ $$\lim_{x \to \frac{\pi}{2}} \frac{\sin(2*x)}{\cos(2*x)(x - \frac{\pi}{2})}$$ $$\lim_{x \to \frac{\pi}{2}} \frac{\sin(2*x)}{(x - \frac{\pi}{2})} * \lim_{x \to \frac{\pi}{2}} (\frac{1}{\cos(2*x)})$$ $$-\lim_{x \to \frac{\pi}{2}} \frac{\sin(2*x)}{(x - \frac{\pi}{2})}$$ $$\lim_{x \to \frac{\pi}{2}} \frac{\sin(2*x)}{\color{red}{(\frac{\pi}{2} - x)}}$$ $$\lim_{x \to \frac{\pi}{2}} \frac{2 * \sin(2*x)}{\pi - 2 *x}$$ $$2 * \lim_{x \to \frac{\pi}{2}} \frac{\sin(\pi - 2*x)}{\pi - 2 *x} $$ Because, $$\sin(x) = \sin(\pi - x)$$ $$\therefore 2 * \lim_{x \to \frac{\pi}{2}} \frac{\sin(\pi - 2*x)}{\pi - 2 *x} = 2 $$

Which is correct and makes sense.

Now i did this question one more way

$$\lim_{x \to \frac{\pi}{2}} \frac{\tan(2*x)}{x - \frac{\pi}{2}}$$ $$\lim_{x \to \frac{\pi}{2}} \frac{2 * \tan(2*x)}{2x - \pi}$$ $$2 * \lim_{x \to \frac{\pi}{2}} -\frac{\tan(\pi - 2*x)}{2*x - \pi}$$ $$2 * \lim_{x \to \frac{\pi}{2}} \frac{\tan(\pi - 2*x)}{\pi-2*x}$$ Now we observe that now as $x \to \frac{\pi}{2}$, $\tan(\pi -2*x) \to 0$ and $\pi - 2*x \to 0$ Thus we can write

$$2 * \lim_{x \to \frac{\pi}{2}} \frac{\tan(\pi - 2*x)}{\pi-2*x} = 2 * \lim_{x \to 0} \frac{\tan(x)}{x} = 2$$

Which is also correct, Can anyone please tell me what is incorrect with 1 approach ?

1 Answers1

1

$$\dfrac{\tan2x}{x-\dfrac\pi2}=\dfrac{\tan2\left(x-\dfrac\pi2\right)}{x-\dfrac\pi2}=2\cdot\dfrac{\tan(2x-\pi)}{2x-\pi}$$

Actually we have $$\lim_{(h)\to0}\dfrac{\tan(h)}{(h)}=\lim_{h\to}\dfrac{\sin h}h\cdot\dfrac1{\lim_{h\to0}\cos h}=1$$

Observe that all the $h$ in parenthesis must be same.