$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\, #2 \,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
\color{#f00}{\int_{-\infty}^{\infty}{\sin^{2}\pars{x} \over x^{2}}\,\dd x} & =
\int_{-\infty}^{\infty}\
\overbrace{\bracks{\half\int_{-1}^{1}\expo{\ic kx}\,\dd k}}
^{\ds{{\sin\pars{x} \over x}}}\
\overbrace{\bracks{\half\int_{-1}^{1}\expo{-\ic qx}\,\dd q}\,\dd x}
^{\ds{{\sin\pars{x} \over x}}}
\\[3mm] & =
{\pi \over 2}\int_{-1}^{1}\int_{-1}^{1}\ \overbrace{%
\int_{-\infty}^{\infty}\expo{\ic\pars{k - q}x}\,{\dd x \over 2\pi}}
^{\ds{\delta\pars{k - q}}}\ \,\dd k\,\dd q =
{\pi \over 2}\int_{-1}^{1}\
\overbrace{\int_{-1}^{1}\delta\pars{k - q}\,\dd k}^{\ds{=\ 1}}\
\,\dd q
\\[3mm] & =
{\pi \over 2}\int_{-1}^{1}\dd q = \color{#f00}{\pi}
\end{align}