$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Leftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\, #2 \,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
With $\ds{a > 1}$:
\begin{align}
2\int_{0}^{\infty}{\cosh\pars{x} - 1 \over x\pars{\expo{ax} - 1}}\,\dd x &=
-a\int_{0}^{\infty}{1 + \pars{\expo{-ax}}^{2/a} - 2\pars{\expo{-ax}}^{1/a} \over
\pars{-ax}\pars{1 - \expo{-ax}}}\,\pars{\expo{-ax}}^{1 - 1/a}\,\dd x
\end{align}
With the
sub$\ds{\ldots\ \expo{-ax} \equiv t\ \iff\ x = -\,{\ln\pars{t} \over a}}$, we'll
have
\begin{align}
2\int_{0}^{\infty}{\cosh\pars{x} - 1 \over x\pars{\expo{ax} - 1}}\,\dd x &=
a\int_{0}^{1}{1 + t^{2/a} -2t^{1/a} \over \ln\pars{t}\pars{1 - t}}
t^{1 - 1/a}\,\pars{-\,{\dd t \over at}} =
\int_{0}^{1}{2 - t^{1/a} - t^{-1/a} \over 1 - t}{1 \over \ln\pars{t}}\,\dd t
\\[3mm] & =
\int_{0}^{1}{2 - t^{1/a} - t^{-1/a} \over 1 - t}\
\overbrace{\bracks{-\int_{0}^{\infty}t^{\mu}\,\dd\mu}}
^{\ds{{1 \over \ln\pars{t}}}}\,\ \dd t
\\[3mm] & =
\int_{0}^{\infty}\bracks{2\int_{0}^{1}{1 - t^{\mu} \over 1 - t}\,\,\dd t -
\int_{0}^{1}{1 - t^{\mu + 1/a} \over 1 - t}\,\,\dd t -
\int_{0}^{1}{1 - t^{\mu - 1/a} \over 1 - t}\,\,\dd t}\,\dd\mu
\\[3mm] & =
\int_{0}^{\infty}\bracks{2\Psi\pars{\mu + 1} -
\Psi\pars{\mu + {1 \over a} + 1} - \Psi\pars{\mu - {1 \over a} + 1}}\,\dd\mu
\end{align}
$\Psi$ is the Digamma function and we used the well known identity
$\ds{\int_{0}^{1}{1 - t^{z - 1} \over 1 - t}\,\dd t =
\Psi\pars{z} + \gamma}$. $\ds{\Re\pars{z} > 0}$. $\ds{\gamma}$ is the Euler-Mascheroni constant.
Since
$\ds{\Psi\pars{z} \stackrel{\mbox{def.}}{=}
\totald{\ln\pars{\Gamma\pars{z}}}{z}}$, the integration is a straightforward one:
\begin{align}\fbox{$\ds{\ %
2\int_{0}^{\infty}{\cosh\pars{x} - 1 \over x\pars{\expo{ax} - 1}}\,\dd x\ }$}
& =
\ln\pars{\Gamma\pars{{1 \over a} + 1}\Gamma\pars{-\,{1 \over a} + 1}} =
\ln\pars{{1 \over a}\,\Gamma\pars{{1 \over a}}\Gamma\pars{1 -{1 \over a}}}
\\[3mm] & =
\fbox{$\ds{\ \ln\pars{{\pi \over a\sin\pars{\pi/a}}}\ }$}
\end{align}
In the last steps we used the Gamma recurrence formula and the Euler reflection formula.