$$I=\int_{0}^{1}{\ln(x) \over 2-x}\,\mathrm{d}x={\ln^2(2)-\zeta(2)\over 2}$$
$$(2-x)^{-1}={1\over2}\left(1-{x\over 2}\right)^{-1}$$
Using binomial series here
$$(2-x)^{-1}={1\over2}\left(1-{x\over 2}\right)^{-1}={1\over2}+{x\over 4}+{x^2\over8}+{x^3\over 16}+\cdots=\sum_{k=0}^{\infty}{x^k\over2^{k+1}}$$
$$I=\sum_{k=0}^{\infty}{1\over 2^{k+1}}\int_{0}^{1}x^k\ln(x)\,\mathrm{d}x$$
$$\int_{0}^{1}x^k\ln(x)\,\mathrm{d}x=-{1\over (1+k)^2}$$
$$I=-\sum_{k=0}^{\infty}{1\over 2^{k+1}(1+k)^2}$$
So this is where I got to, unable to determine this infinite sum. Do anyone know how to prove that,
$$-\sum_{k=0}^{\infty}{1\over 2^{k+1}(1+k)^2}={\ln^2(2)-\zeta(2) \over 2}$$