2

I can't quite figure out how to manipulate this into a determinate form — should I try rationalizing it by multiplying by the conjugate, completing the square, or something like that?

Note: I'm in precalc, so haven't learned any fancy calculus theorems, etc.

James
  • 252

2 Answers2

5

$$ \begin{aligned} \sqrt{x^{2}+ax}-\sqrt{x^{2}+bx}&=\frac{\sqrt{x^{2}+ax}-\sqrt{x^{2}+bx}}{\sqrt{x^{2}+ax}+\sqrt{x^{2}+bx}}\cdot(\sqrt{x^{2}+ax}+\sqrt{x^{2}+bx})\\[6pt] &=\frac{x^{2}+ax-x^{2}-bx}{\sqrt{x^{2}+ax}+\sqrt{x^{2}+bx}}\\[6pt] &=\frac{(a-b)x}{\sqrt{x^{2}+ax}+\sqrt{x^{2}+bx}}\\[6pt] &=\frac{a-b}{\sqrt{1+a/x}+\sqrt{1+b/x}}. \end{aligned} $$

Now take the limit.

ervx
  • 12,208
2

Hint:

Here's an overview of what you should do:

  • Rationalize by multiplying by the conjugate.
  • Simplify the numerator.
  • Factor an $x$ out of the denominator and reduce the whole fraction.
  • Take the limit of the new expression.
Noble Mushtak
  • 18,402
  • 28
  • 44