7

When I try to do this type of indeterminations I reach to this point:

$\lim\limits_{ x\to \infty } \dfrac { 2x }{ \sqrt { x^ 2 +3x } +\sqrt { x^2 +x } } $

but I don't know how to continue. Thanks.

Garmen1778
  • 2,338

1 Answers1

5

$\lim\limits_{ x\to \infty }{ \dfrac { 2x }{ \sqrt { { x }^{ 2 }+3x } +\sqrt { { x }^{ 2 }+x } } } $

$\lim\limits_{x\to \infty }\frac {2}{\large{\sqrt \frac{x^2+3x}{x^2}+\sqrt \frac{x^2+x}{x^2}}}=\lim\limits_{x\to \infty }\frac {2}{\large{\sqrt{ 1+\frac{3x}{x^2}}+\sqrt{ 1+\frac{x}{x^2}}}}=\lim\limits_{x\to \infty }\frac {2}{\large{\sqrt{ 1+\frac{3}{x}}+\sqrt{ 1+\frac{1}{x}}}}=\frac {2}{\large{\sqrt{ 1+0}+\sqrt{ 1+0}}}=1$

Garmen1778
  • 2,338
Mathlover
  • 10,058