$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
\int_{0}^{1}{\ln\pars{x} \over 1 + x^{5}}\,\dd x &=
\int_{0}^{1}\ln\pars{x}\pars{{1 \over 1 + x^{5}} + {1 \over 1 - x^{5}}}\,\dd x -
\int_{0}^{1}{\ln\pars{x} \over 1 - x^{5}}\,\dd x
\\[3mm] & =
2\int_{0}^{1}{\ln\pars{x} \over 1 - x^{10}}\,\dd x -
\int_{0}^{1}{\ln\pars{x} \over 1 - x^{5}}\,\dd x
\\[3mm] & =
{1 \over 50}\int_{0}^{1}{\ln\pars{x} \over 1 - x}\,x^{-9/10}\,\dd x -
{1 \over 25}\int_{0}^{1}{\ln\pars{x} \over 1 - x}\,x^{-4/5}\,\dd x
\\[3mm] & =
-\,{1 \over 50}\lim_{\mu \to -9/10}\totald{}{\mu}
\overbrace{\int_{0}^{1}{1 - t^{\mu} \over 1 - x}\,\dd x}
^{\ds{\Psi\pars{\mu + 1} + \gamma}}\ +\
{1 \over 25}\lim_{\mu \to -4/5}\totald{}{\mu}
\overbrace{\int_{0}^{1}{1 - t^{\mu} \over 1 - x}\,\dd x}^{\ds{\Psi\pars{\mu + 1} + \gamma}}
\\[3mm] & =
\fbox{$\ds{{1 \over 50}\bracks{%
2\Psi\,'\pars{{1 \over 5}} - \Psi\,'\pars{{1 \over 10}}}}$}
\approx -0.9780
\end{align}
$\Psi\pars{z}$ is the digamma function and $\gamma$ is the Euler-Mascheroni constant. The final integral which involves the $\Psi$ function is a 'standard' identity and it appears in, for example, Abramowitz and Stegun table.