$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
It's a "candidate" to the
Ramanujan's Master Theorem:
\begin{align}
&\bbox[5px,#ffd]{%
\int_{0}^{1}{x^{a} + x^{-a} \over 1 + x^{2}}\,\dd x} =
{1 \over 2}\int_{0}^{\infty}{x^{a} + x^{-a} \over 1 + x^{2}}\,\dd x
\\[5mm] = &\
\int_{0}^{\infty}{x^{a} \over 1 + x^{2}}\,\dd x =
{1 \over 2}\int_{0}^{\infty}{x^{\pars{\color{red}{a/2 + 1/2}} - 1} \over 1 + x}\,\dd x
\end{align}
Note that
$\ds{{1 \over 1 + x} = \sum_{k = 0}^{\infty}\pars{-1}x^{k} =
\sum_{k = 0}^{\infty}\color{red}{\Gamma\pars{k + 1}}
\,{\pars{-x}^{k} \over k!}}$.
Then,
\begin{align}
&\bbox[5px,#ffd]{%
\int_{0}^{1}{x^{a} + x^{-a} \over 1 + x^{2}}\,\dd x} =
{1 \over 2}\,\Gamma\pars{{a \over 2} + {1 \over 2}}
\Gamma\pars{-\bracks{{a \over 2} + {1 \over 2}} + 1}
\\[5mm] = &\
{1 \over 2}\,{\pi \over\sin\pars{\pi a/2 + \pi/2}} =
\bbx{{1 \over 2}\,\pi\sec\pars{\pi a \over 2}} \\ &
\end{align}