Let $n\in N^{+}$,and the sequence $x_{n}$ number of elements $$\{(a_{1},a_{2},\cdots,a_{n})|a_{i}a_{i+1}=0,\rm{and}~ a_{i}\in\{0,1\},\forall i=1,2,\cdots,n\}$$
Question: Find the colsed form $x_{n}(n\ge 2)$
for $n=2$, such $(a_{1},a_{2})=(0,1),(0,0),(1,0)$,so we have $x_{2}=3$
for $n=3$
$$(a_{1},a_{2},a_{3})=(0,1,0),(0,0,1),(0,0,0),(1,0,1),(1,0,0)$$ so $x_{3}=5$
but $x_{n}=?$
Thanks