2

Find the sum of the series: $$ \sum_ {n=1} ^{\infty} {nz^n} , $$ $$ |z| < 1$$

Where do I start from? Can I use the root test?

Josh
  • 221

2 Answers2

2

Here is a useful finite evaluation: $$ 1+z+z^2+...+z^n=\frac{1-z^{n+1}}{1-z}, \quad |z|<1. \tag1 $$ Then by differentiating $(1)$ you get $$ 1+2z+3z^2+...+nz^{n-1}=\frac{1-z^{n+1}}{(1-z)^2}+\frac{-(n+1)z^{n}}{1-z}, \quad |z|<1, \tag2 $$ and by making $n \to +\infty$ in $(2)$, using $|z|<1$, and multiplying by $z$ gives

$$ \sum_{n=1}^\infty nz^n=z+2z^2+3z^3+...+nz^n+...=\frac{z}{(1-z)^2}. \tag3 $$

Olivier Oloa
  • 120,989
0

$$\sum_ {n=1} ^{\infty} {nz^n} =\left(\sum_ {n=1} ^{\infty} {z^n} \right)^2$$