Use the induction on $n$.
For $n=1,2$, the AM-GM inequality holds immediately. Now,
suppose that for $n=2^r$, where $r\in\mathbb{N}$, the AM-GM inequality holds. That is,
$$\frac{a_1+a_2+\cdots+a_{2^r}}{2^r}\geq\sqrt[2^r]{a_1a_2\cdots a_{2^r}}.$$
Then consider $n=2^{r+1}$, we have
\begin{align*}
\frac{a_1+a_2+\cdots+a_{2^{r+1}}}{2^{r+1}}
&=\frac{1}{2}\left(\frac{a_1+\cdots+a_{2^r}}{2^r}
+\frac{a_{2^{r}+1}+\cdots+a_{2^{r+1}}}{2^r}\right)\\
&\geq\frac{1}{2}\left(\sqrt[2^r]{a_1\cdots a_{2^{r}}}
+\sqrt[2^r]{a_{2^{r}+1}\cdots a_{2^{r+1}}}\right)\\
&\geq\sqrt{\sqrt[2^r]{a_1\cdots a_{2^{r}}}
\,\,\sqrt[2^r]{a_{2^{r}+1}\cdots a_{2^{r+1}}}}\\
&=\sqrt[2^{r+1}]{a_1a_2\cdots a_{2^{r+1}}}.
\end{align*}
So we conclude that the AM-GM inequality holds for all $n$ which is a power of $2$.
Next, given $n\in\mathbb{N}$ such that $2^{r-1}<n<2^{r}$ for some $r\in\mathbb{N}$, we let $2^r=n+s$, where $0<s<2^{r-1}$. Then given
positive reals $a_1,a_2,\ldots,a_n$, and let
$k=\frac{a_1+a_2+\cdots+a_n}{n}$, we see that by the preceding result,
\begin{align*}
& &\frac{a_1+a_2+\cdots+a_n+sk}{n+s}&\geq\sqrt[n+s]{a_1a_2\cdots a_nk^s}\\
\Longleftrightarrow& &\left(\frac{nk+sk}{n+s}\right)^{n+s}
&\geq a_1a_2\cdots a_nk^s\\
\Longleftrightarrow& & k^{n+s}&\geq a_1a_2\cdots a_nk^s\\
\Longleftrightarrow& & k^n&\geq a_1a_2\cdots a_n\\
\Longleftrightarrow& &\left(\frac{a_1+a_2+\cdots+a_n}{n}\right)^n&\geq a_1a_2\cdots a_n\\
\Longleftrightarrow& &\frac{a_1+a_2+\cdots+a_n}{n}&\geq \sqrt[n]{a_1a_2\cdots a_n}.\\
\end{align*}
Thus we conclude that the AM-GM inequality holds for all $n\in\mathbb{N}$.