Say $c_1.e^{r_1 x} + c_2.e^{r_2 x} + ... + c_n.e^{r_n x} = 0$
Differentiate w.r.t. x:
$r_1.c_1.e^{r_1 x} + r_2.c_2.e^{r_2 x} + ... + r_n.c_n.e^{r_n x} = 0$
n-th order derivative:
$r_1^n.c_1.e^{r_1 x} + r_2^n.c_2.e^{r_2 x} + ... + r_n^n.c_n.e^{r_n x} = 0$
Now we have
$\begin{bmatrix}
1 & 1 &... & 1\\
r_1 & r_2 &... & r_n\\
. & . &... & . \\
. & . &... & . \\
r_1^n & r_2^n &... & r_n^n\end{bmatrix}$ .
$\begin{bmatrix}
c_1.e^{r_1 x} \\
. \\
. \\
c_n.e^{r_n x}
\end{bmatrix}$ = $0$.
The matrix is Vander Monde matrix, so it is invertible, thus
$\begin{bmatrix}
c_1.e^{r_1 x} \\
. \\
. \\
c_n.e^{r_n x} \end{bmatrix} = 0$.
That is each $c_k.e^{r_k x} = 0$, which means $c_k = 0$.