2

Let $a>0$ and $n,k$ positive integers.

If $$n\ln\left(1+a/n\right)\geqslant k\ln\left(1+a/k\right),$$ then $$n\geqslant k.$$

I tried by contrapositive by I do not get much. If $n<k$ then I would have $$\ln\left(1+a/n\right)>\ln\left(1+a/k\right),$$ which does not help me a lot.

2 Answers2

4

if $n\gt m\gt0$ and $a\gt0$, then Bernoulli's Inequality says $$ \left(1+\frac an\right)^{n/m}\gt\left(1+\frac an\frac nm\right)=\left(1+\frac am\right) $$ Therefore, $$ \left(1+\frac an\right)^n\gt\left(1+\frac am\right)^m $$ Reversing roles we have that for $m\gt n\gt0$, $$ \left(1+\frac an\right)^n\lt\left(1+\frac am\right)^m $$ Taking logarithms proves the required implication.

robjohn
  • 345,667
3

Let $f(x) =x \ln(1+a/x) $.

$\begin{array}\\ f'(x) &=\ln(1+a/x)+x(\ln(1+a/x))'\\ &=\ln(1+a/x)+x\frac{(1+a/x)'}{1+a/x}\\ &=\ln((x+a)/x)+x\frac{-a/x^2}{1+a/x}\\ &=-\ln(x/(x+a))-\frac{a}{x+a}\\ &=-\ln(1-a/(x+a))-\frac{a}{x+a}\\ &\gt a/(x+a)-\frac{a}{x+a} \qquad\text{since }-\ln(1-z) > z \text{ for }z > 0\\ &= 0\\ \end{array} $

Therefore $f(x)$ is increasing, which is what you want.

marty cohen
  • 107,799