I am given the double exponential distribution under the form
$$f(x_i\mid\theta) = \frac{1}{2}e^{-\frac{1}{2}|x_i - \theta|}$$
and I need to find the MLE of $\theta$. I have two approaches until now. The first being
\begin{align} L(\theta \mid \mathbf{x}) &= \prod_{i=1}^n f(x_i\mid\theta) \\ & = \prod_{i=1}^{n} \frac{1}{2}e^{-\frac{1}{2}|x_i - \theta|} \\ & = \left(\frac{1}{2} \right)^ne^{-\frac{1}{2}\sum_{i=1}^n|x_i - \theta|} \\ \Rightarrow \log L(\theta \mid \mathbf{x}) = \ell(\theta \mid \mathbf{x}) & = n\log\frac{1}{2}-\frac{1}{2}\sum_{i=1}^{n}|x_i - \theta| \end{align}
So taking derivative w.r.t. $\theta$ of $\ell(\theta \mid \mathbf{x})$ and setting it to 0, we have
$$0 = \sum_{i=1}^n \operatorname{sgn}|x_i - \theta| $$
This where I am not sure how to proceed, my instinct and previous practice tells me that the answer is the median (because of that absolute value going around), but I am not sure how to justify it. My second approach was this, we had that
\begin{align} L(\theta \mid \mathbf{x}) &= \prod_{i=1}^{n} f(x_i\mid\theta) \\ & = \prod_{i=1}^{n} \frac{1}{2}e^{-\frac{1}{2}|x_i - \theta|} \\ & = \prod_{i=1}^{n} \frac{1}{2}e^{-\frac{1}{2}|x_{(i)} - \theta|} \\ & = \left(\frac{1}{2} \right)^ne^{-\frac{1}{2}\sum_{i=1}^n|x_{(i)} - \theta|} \\ \Rightarrow \log L(\theta \mid \mathbf{x}) = \ell(\theta \mid \mathbf{x}) & = n \log\frac{1}{2} - \frac{1}{2}\sum_{i=1}^n |x_{(i)} - \theta| \end{align}
Now, let $j$ be such that $x_{(j)}<\theta$ and so $x_{(j+1)}>\theta$, then
\begin{align} \ell(\theta \mid \mathbf{x}) & = n\log\frac{1}{2}-\frac{1}{2}\sum_{i=1}^n |x_{(i)} - \theta| = n\log\frac{1}{2}+\frac{1}{2}\sum_{i=1}^j(\theta-x_{(i)} ) - \frac{1}{2}\sum_{i=j+1}^n(x_{(i)} -\theta) \end{align}
and again I am stuck here. Any hints, help, or corrections to what I did will be appreciated thank you.