Let $X_1,X_2,...,X_n$ be a random sample from the density. $f(x;\theta)=\dfrac{1}{2}e^{|x-\theta|},-\infty<\theta<\infty$.
Discuss the sufficiency and MlE of $\theta$ for this density
I can write this density function as
$ f(x;\theta) = \begin{cases} \dfrac{1}{2}e^{-(x-\theta)} , \theta < x < \infty \\ \dfrac{1}{2}e^{(x-\theta)} , -\infty < x < \theta \end{cases}$
I am skipping the whole proof as I am preparing for time based exam. I just want to know for the first part,we have $\theta<x_{(1)}$ and for second part $\theta>x_{(n)}$
So $x_{(1)}$ and $x_{(n)}$ are jointly sufficient. Am I right ?
and for MLE $\theta$ satisfies $ x_{(n)}<\theta<x_{(1)}$ which seems absurd. Mle doesnt exist in this case?