Show $$\sum_\limits{k=1}^\infty \frac 1 k$$ does not converge.
Attempt:
Let $s_n=\sum_\limits{k=1}^{n}1/k$, and let $\epsilon=1/2$. For all $N\in\mathbb{N}$, we have $$\left|s_{2n}-s_n\right|=\left|\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}\right|\geq1/2,\qquad\text{for all $n\geq N$}$$ Hence, $\{s_n\}_{n=1}^{\infty}$ is not a Cauchy sequence.
Since $\{s_n\}_{k=1}^{\infty}$ is not a Cauchy sequence which implies $\{s_n\}$ doesn't converge, we have $$\lim\limits_{n\rightarrow\infty}s_n=\lim\limits_{n\rightarrow\infty}\sum_{k=1}^{n}\frac{1}{k}=\infty$$ Therefore, the infinite series $\sum_\limits{k=1}^{\infty}\frac{1}{k}$ does not converge.
I am not sure this is valid or not because I use contradiction to do these kind problem.