Basis step: For $n=1$, equation holds.
Inductive step: Now, $$\sum^{2n}_{i=1} \frac{(-1)^{i-1}}{i}=\sum^n_{i=1}\frac{1}{n+i} \tag{i. h.}$$ Now we want to show that $$\sum^{2n+2}_{i=1} \frac{(-1)^{i-1}}{i}=\sum^{n+1}_{i=1}\frac{1}{n+1+i}.$$ So, $$ \sum^{2n+2}_{i=1} \frac{(-1)^{i-1}}{i} = \sum^{2n}_{i=1} \frac{(-1)^{i-1}}{i} + \frac{(-1)^{2n}}{2n+1} + \frac{(-1)^{2n+1}}{2n+2} = \text{(by inductive hypothesis)}= \sum^n_{i=1}\frac{1}{n+i}+\frac{1}{2n+1}-\frac{1}{2n+2} $$ This is where I'm stuck.