Let $\Omega$ be a bounded Lipschitz domain.
Let $u \in H^1(\Omega) \cap L^\infty(\Omega)$, and suppose that $\lVert u \rVert_{L^\infty(\Omega)} \leq A$.
Let $T:H^1(\Omega) \to L^2(\partial\Omega)$ be the trace mapping.
Is it true that $Tu \in L^\infty(\partial\Omega)$ with $\lVert Tu \rVert_{L^\infty(\partial\Omega)} \leq A'$ for some constant $A'$?
I think so, since we can find functions $u_n \in C^0(\bar \Omega)$ bounded by $A$ such that $u_n \to u$ in $H^1$ and $Tu = \lim Tu_n$ in $L^2$.