Recall the Fibonacci function defined by $f(0) = 0; \\f(1) = 1; \\f(n) = f(n-1) + f(n - 2)$
for all $n \ge 2$ Prove that $f(n) \cdot f(n + 1) = f(1)^2 + f(2)^2 + . . . + f(n)^2.$
Recall the Fibonacci function defined by $f(0) = 0; \\f(1) = 1; \\f(n) = f(n-1) + f(n - 2)$
for all $n \ge 2$ Prove that $f(n) \cdot f(n + 1) = f(1)^2 + f(2)^2 + . . . + f(n)^2.$
Hint: $$f(n)\cdot f(n+1) = \sum_{k=1}^nf(k)^2$$ $$\implies f(n+1)\cdot f(n+2) = f(n+1)\left[f(n+1) + f(n)\right]$$ $$= f(n+1)^2 + f(n)f(n+1) = \cdots$$