Let $\zeta$ be the cube root of 1 given by $\zeta=\frac{-1}{2}+i\frac{\sqrt{3}}{2}$ and let $\mathbb{Z}[\zeta]=\{a+\zeta b: a, b\in \mathbb{Z}\}$, called the "Eisenstein integers".
How prove the following exercises?
(a) Every element of $\mathbb{Z}[\zeta]$ can be uniquenly written in the form $a+\zeta b$ for some $a, b\in\mathbb{Z}$.
(b) Let $N(a+\zeta b)=(a+\zeta b)(a+\overline{\zeta} b)=a^2-ab+b^2$. Show that the units of $\mathbb{Z}[\zeta]$ are $\{\pm 1,\pm\zeta, \pm \zeta^2 \}$.
(c) Show $\mathbb{Z}[\zeta]$ is an Euclidean domain with size function $N$.